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SUMMARY

A combined Monte Carlo-direct covariance algorithm digital computer
software package has been developed and tested for determining the
effects of noise disturbances on large-scale missile systems, The
combined software package was applied to a thirty-third order math
model of a six degree-of-freedom air defense missile system. The
large-scale system was composed of a fifteenth-order (15th) autopilot,
a fourth-order (4th) actuator subsystem, a twelfth-order (12th)
airframe, and a second-order (2nd) seeker. This final report documents
the results of a two-year development effort under Contract DAAHO1-72-
C-0672, which was initiated on April 7, 1972,

A basic statistical covariance program involving incremental
variations about noise-free operating conditions was developed during
the first year to calculate the effects of noise propagation for missile
systems up to approximately 25th order, Specific tasks during
that period included the development and testing of the basic
program, establishing accuracy lTevels on a typical missile system,
establishing tradeoff possibilities for improved program operation,
and developing and testing automatic programs to be used with existing
digital or hybrid simulations. The basic program was expanded for
higher-order systems up to approximately 50th order during the

second year. Specific tasks included expanding the basic program,

simplifying the program via approximations, developing sequential
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operations, and establishing Tinal guidelines. All eight of these
contract objectives and the associated four milestones were met
on schedile,

The expander; program is dsscribed in Shapters III and IV of
this final report with numerical results for a thirty-third order
missile system i Chapter V. In particular, Table IV of Chapter IV
indicates that rniine new subroutines were added to the existing digital
computer program, major changes were made in three other subroutines,
and seven of the remaining seventeen subroutines required only minor
changes. Several innovat’ as, including an adaptive feature for
the calculation of certain coefficient matiix elements, were incorporated
into the program development. These have been documented in this
final report.

Accuracy levels were established for the direct covariance algorithm
by comparing with 25 Monte Carlo simulation runs for the large-scale
missile system. Figure 13 indicates that excellent results were
obtained for several orders of missile systems by using the direct
covariance algorithm, It was also shown that the thirty-third order
system exhibited harsh nonlinear characteristics during the launch
and terminal modes of a typical flight. Therefore, the Monte Carlo
technique was utilized during these modes of operation, and the
direct covariance algorithm was used during the large mid-portion of
the flight. This combined software package is included in Appendix C.

Tradeoff possibilities with respect to accuracy, computational
speed, computing equipment requirements (including storage), and
program compiexity were examined. It was shown that the RK2 integration

formula represented an efficient tradeoff between speed and accuracy
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' for covariance matrix calculations, Simplifying approximations

were developed to speed up the operation of the combined software
package. Constant coefficients were used to replace siowly-varying
elements of the A(t) coefficient matrix. It was shown that during
the large mid-portion of the flight, where the direct covariance

f algorithm was applicable, an important approximation involved the
propagation of noise through the seeker relay nonlinearities. Output
‘ variance calculations for these relays were achieved from Subroutines
| SNOISE and DETARA by using the resulting output joint probability
density function directly. The harsh nonlinearties encountered during
launch and terminal modes could not be handled by this simplified
approach. Therefore, Monte Carlo runs were needed for these portions

of the flight to supplement direct covariance calculations.

An increased accuracy and a significant savings in computational
E time are realized for those applications where the direct covariance
algorithm may be used over a large portion of the flight. It is shown

in Chapter V that input noise levels determine the region in which the .

direct covariance algorithm is applicable. For the thirty-third order f
f system described in Chapter III with the given noise levels, the combined
g program operated at approximately twice the speed of 25 Monte Carlo

simulations with comparable accuracy. Moreover, the combined program

ST R R

operated at approximately six times the speed of 200 Monte Carlo simu-

lations and over thirty times the speed of 1000 Monte Carlo simulations.

g

i Based on both accuracy and computational speed, this combined digital
.

f computer software package provides improved capabilities for handling
i noise propagation in large-scale missile system applications.
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CHAPTER I
INTRODUCTION

Computer software packages have proven to be very useful for the
application of sophisticated analysis and design algorithms for in-
dustrial problems. Their usefulness in providing powerful results in an
easily applied form for the user has led to the development of efficient
software packages for large-scale systems. One problem area in which
software packages are becoming more popular involves those systems
having inherent noise problems resulting from random variations in
disturbance inputs and/or system parameters, These random variations
result in errors being propagated throughout the large-scale systems.

A thorough knowledge of the large-scale system dynamics, statistical
properties of dynamical systems, and some simulation experience are
necessary for the development of computer software packages for these
applications. This final report describes the development and testing
of a digital computer software package for determining the propagation

of errors due to noise in large-scale missile systems.

Background

Previous work on noise propagation problems has focused on the use
of the Monte Carlo technique in which large numbers of runs are en-
semble-averaged to obtain statistical results. Primary considerations

in the use of this traditional approach are the generation of
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prespecified statistical +nputs and the simulation of dynamical sys-
tems. A more modern approach based on computing the state covariance
matrix directly has become popular in recent years. This new approach,
referred to as the direct covariance algorithm, has been applied for

an approximate analysis of large-scale nonlinear systems. The develop-
ment of a computer software package using tne direct covariance
algorithm would yreatly enhance large-scaie system analysis capabili-
ties.

The Monte Cario method uses repeated sample functions as inputs
to the model of a mathematical or physical process. Earlier noise
propagation studies by the Monte Cario method were based on the use of
analog noise ge‘erators, Due to the fact that these generators were
not repetitive, the anaiog avproach became unpopular after the recent
deveiopinent of digital pseudo-random number generators. These genera-
tors could be used to generate the same numbers as many times as
desired and, thus, ease the work of debugging the simulated program.
Large amounts of simuiated random data are required for acceptable
results. For the digital implementation of the Monte Carlo technique,
pseudo-random numbers are either drawn from tables (1) or generated
from simple relationships within the computer. For the former case
the random numbers must be stored and used whé;ever required. How-
ever, for the latter case Chambers (2), Hull and Dobell (3), MacLaren
and Marsaglia (4), and Gelder (5) have deyeloped mixed congruential
and multiplicative recurrence formulas for generating pseudo-random
numbers. The numbers generated are uniformly distributed on the
interval (0,1). The uniformly distributed numbers may be converted

into zero-mean, unity-variance, Gaussianly distributed random numbers
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by an exact closed-form expression developed by Box and Muiler (6). An
alternate, but approximate, method of converting the uniform sequence
to a Gaussian sequence utilizes the Central Limit theorem which states
that as the number of statistically independent variables is increased
without 1imit, a Gaussian probability distribution is approached for
the sum, regardiess of the probability distributions of the various
variables.

A direct technique (7-i2) has resulted from the error covariance
matrix propagation in the Kalman filtering equation (13,14). Though
exact for linear time-varying systems, the direct covariance algorithm
has also been applied for mildly non-linear systems. For example, this
technique has been used by Kuhnel and Sage (15) for sensitivity equa-
tions about a nominal flight path due to trajectory initial condition
dispersions and random system variations. They used a thirty-third
order, six degree-of-freedom homing missile model to illustrate the
application to a realistic situation. Kuhnel and Sage used only the
adjoint method whereas Irwin and Hung (16) applied both direct and
adjoint methods for evaluating the state covariance algorithm for
large-scale, nonlinear, dynamical systems. An interval-by-interval
linearization procedure has also been proposed (17,18). For nonlinear
feedback systems, the direct covariance approach has been used by
Brown (19-21) for solving trajectory optimization problems. Using a
more accurate algorithm about a nominal trajectory, Clark (22, 23) has
developed related results.

Rowland and Hoimes (24) have show:i that the direct covariance
technique is more accurate and faster than the Monte Carlo approach.

They demonstrated that the direct covariance algorithm can be applied
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to mildly nonlinear systems with acceptable results by using linearized
incremental equations about the noise-free solution. The objective of
this effort was to develop a computer software package for the ef-

ficient implementation of the direct covariance algorithm.
Derivation of the Direct Covariance Algorithm

Consider the linear, time-varying, dynamical system represented
by the vector differential equation

x(t) = A(t)x(t) + B(t)u(t) (1.1)

where x(t) is an n-dimensional state vector, A{t) is an n by n matrix,

8(t) is an n by m matrix, and w(t) is an m-dimensional input noise vector.

The covariance matrix of the state vector (24,25)* is defined as

P(t) & Ex(t)x!(t)) (1.2)

The elements of the input noise vector are zero-mean white noise pro-

cesses, and their covariance matrix is represented by
EGu(t)u’ (1)} = Q(t) s(t-1) (1.3)

where §(+) is the impulse function. The m by m covariance matrix

Qw(t) may be time-varying in general.

The covariance matrix P(t) may be determined directly in terms
of A(t), B(t),and Qw(t) by using x(t) in (1.2). The solution of the

time-varying, linear differential equation given by (1.1) is
x(t) = elt,t)) x(t)) + 45 (t,t) B(x) w(x)dr (1.4)
0

Therefore, the covariance matrix of x(t) may be calculated as

* Reprirts of (25) and other selected papers are included in Appendix A.
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P(t) = Efx(t)x' (£}
= E[Te(t,t ) x(t,] + {° o(t,7) B(x] w(xldr)
0
ot t x(t ] + L5 o (t,x) B(x) w(x)dn}'] (1.5)

0]

Since x(t ) and w(t) are uncorrelated for all t>t ),

P(t) = Efa(t,t,) x(t,) fa(t,ty) x(t, ) +

t (t
{247 000m) 8D g el oy

a(t,ty) Elx(t ix"(t))} o' (t,t )
{z {z ¢(t,77) B(r)) E{Eﬁr])ﬂT(rz)} BT(TZ) ¢T(t,12)dr]d12 (1,6)

Using (1.3) and the sifting property of the delta function, (1.6)

reduces to
T
P(t) = olt,ty) P(ty) o (t,t)) +
{z oltyy) B(sy) Q(5) B (rp) @7 (tiry )y (1.7)

The integral equation in (1.7) may be expressed more conveniently as a
matrix differential equation for P(t). In establishing this form, the
state transition matrix ¢(t,to) is identified as the solution of the

homogeneous 1linear differential equation
. _d -

with the boundary condition ¢(to,t°) = I, Using the relationship in
(1.8) to simplify (1.7) gives
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+ o(t,t) B(t) Q (t) BT(t) ¢T(t,t)
P(t) = ACt) [o(t,z,) P(t ) ¢ (t,t,)

+ {:z ¢(t,‘r.|) B(T]) Q_V_J_(Ll) BT(T]) Q’T(tﬂ])dr]]

+ [o(t,t)) P(t,) o (t,t)
F el D8, (e )BT o ey o TR )

+B(t) q,(t) B'(t) (1.9)

where ¢(t,t) has been replaced by the identity matrix 1. Therefore,
P(t) = A(t) P(t) + P(t) AT(t) + B(t) Q(t) BT(t) (1.10)

The desired result in (1.10) yields P(t) by solving a set of linear

differential equations.

Criteria for Comparison

Since the most efficient technique is sougnt for the study of
noise propagation in large-scale systems, the criteria for comparison
between the Monte Carlo technique and the direct covariance algorithm
play an important role in selecting the most suitable technique. Some

of these criteria are discussed in the following paragranhs.
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Information Provided

The primary consideration for choosing a simulation technique is
greatly influenced by the information provided by that technique. The
tionte Carlo technique provides the complete probability density func-
tion associated with random phenomena, whereas the direct covariance
technique only gives the variance about the nominal trajectory, which
serves as the mean value. In many applications of interest, the
mean and variance of selected states is all the information that is

required for an acceptable analysis of system behavior,

Accuracx

The next criterion for comparison is the accuracy level pro-
vided, which varies with different techniques. The direct covariance
algorithm gives exact vasults for l1inear systems and may be appliied
to yleld acceptable results for mildly nonlinear systems. On the
other hand, the results of 25 to 50 Monte Carlo runs may not provide
acceptable accuracy, although a high accuracy may be expected with
1000 Monte Carlo runs (24,25), The step size chosen for integration may

be used as a control for the tradeoff between accuracy and compu~

tational time.

Computer Storage

The computer software package efficiency may also be judged by
tne computer storage needed for the anplication of various techniques.
The direct covariance algorithm requires somewhat more storage as

compared to the Monte Carlo technique. The amount of additional
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storage depends upon the order of the system being considered as shown

in later chapters.

Computational Time

Another objective of an efficient computer software package is to
obtain a computationally fast algorithm. T4 speed and accuracy may
be examined with respect to tradeoff possibilities. For extremely
accurate results, the computational time needed may be quite large.

By the use of large integration step sizes, the computational speed
may be inCreased. There are many approximate techniques which may be
used to reduce the computation time. For example, slowly time~varying
coefficients may be replaced by constant coefficients and very small
variables and coefficients may be replaced by zero. Moreoyer, if

the order of the system can be reduced, a considerable savings in com-

puter time might be realized,

Program "Cmpp‘1 exity

The computer software package should be simple so that anyone
with only Timited simulation experience is able to understand it. Due
to the inverse relation of the complexity and computation time, the
tradeoff between them is possible. With maximum complexity the com~
puter time may be reduced by as much as a factor of ten in certain

applications.

Possibilities of Extenssion

The general computer software package for the direct covariance

algorithm is a fundamental step in the subsequent development of an
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efficient software package for Kalman filtering as a practical esti-

mation algorithm. Furthermore, many approximate noniinear filtering

i K = o emrti— o e

algorithms are based on similar considerations.

Outline

Fellowing this introductory chapter, the direct covariance algo-
rithm is extended in Chapter II for application to nonlinear systems. ;

In addition, several Monte Carlo tests are performed to determine a

suitabie discretization procedure for subsequent use in vaiidating
the results of the digital computer software package. The software
package development and its appiication to a large-scale missile sys- ;
tem are described in Chapter III. A description of the combined

Monte Carlo - direct covariance algorithm software package is provided 4
in Chapter IV, Final numerical results using this software package .

are presented in Chapter V,
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CHAPTER II

DIRECT COVARIANCE ALGORITHM EXTENSIONS
AND MONTE CARLO TESTING

This chapter defines the general mathematical system under con-
sideration and extends the direct covariance algorithm for this non-
1inear case. Numerical results are presented for a second-order
nonlinear system to demonstrate the applicability of the algorithm.
Thereafter, the problem of modeiing continuous white noise inputs on
the digital computer is investigated from a more general viewpoint
than considered previously. Three modeling representations are pre-
sented and'then compared on a second-order system. The best of these
discretization procedures is used in subsequent chapters to compare the
Monte Carlo technique with the direct covariance algorithm on a

thirty~- third order math model of a six degree-of-freedom air defense

missile system.

Mathematical Formulation

Consider the nonlinear, time-varying, dynamical system represented

by the vector differential equation
X = fx, w, t) (2.1)

where x is the n-dimensional yector of system variables, w is an m-

dimensional input noise vector, and t is the independent variable

representing time.
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The input noise yector !ﬁt) has a mean value specified by the m-
dimensional vector nw(t) and a covariance matrix Qw(t), which is m by

m in dimension. These quantities may be defined mathematically as

Ew(t)} £ nt)

ELIW(E) = o (8] [u(e) = n (0T} £ Qut) s(tr)  (2.2)

where &(+) is the impulse function.

The covariance matrix of the state x(t) is defined as
PEE) & EAIx(E) - n,(0)] Ix(x) = (001D (2.3)

where nx(t) is the mean of x(t). The problem is to determine P(t) in
terms of'the‘mathematical description of the nonlinear system in (2.1)

and the properties of the input noise vector given in (2.2).

An Approximate Covariance Analysis

of Nonlinear Systems

The application of the direct covariance algorithm developed in

Chapter I to the ronlinear system in (2.1) can be achieved as an ap-

proximate énaTysis. Let Zn(t) denote the noise-free nominal trajectory

obtained by replacing w(t) by nw(t) in {(2.1). It is assumed that the
input noise disturbances cause sufficiently small deviations about
this nominal solution such that nx(t) = 5N(t). Let these small devia-

tions sx(t) be defined by
ax(t) & x(t) - xy(t) (2.4)

Expanding (2.1) in a Tayler's series about gN(t) yields

ax(t) = A(t) ax(t) + B(t)w(t) (2.8)
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where
of |
Alt) = X
—x(t) = x,(t)
w(t) = n,(t)
(t) & = (
B{t) 2 — 2.6
M x(t) = x,(t) )
w(t) = nﬂﬂt)

The approximation made in (2.5) is that the second and 11 higher-order
terms in éx are negligible when compared to the linear terms. This
approximation is valid if the §x variations are sufficiently small.

To demonstrate the importance of this approximation, consider the
second-order nonlinear system investigated in (24,25). The system is
described by

2 .
-2x1 t Xy + ¥X, sign (xz)

un

.i1
(2.7)

iz ~X, + w(t)
where w(t) is a zero-mean Gaussian white noise process applied for
all t > 0. Figure 1 shows the results from (24,25) by applying
the direct covariance algorithm as the input covariance Qw was in-
creased from 0.01 to 5. As Q, was increased, the higher-order §x
variations in (2.5) became significant ana larger errors were obtained.
Therefore, the arbitrary application of the direct covariatice algo-

rithm to nonlinear systems with severe nonlinearities and/or ex-

tremely high input noise levels must be approached with some caution,
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Monte Carlo Testing

To validate the accuracy of the computer software package for the
direct covariance algorithm, comparisons were made with the Monte
Carlo technique. As a preliminary step, the discretization procedures
for white noise inputs were investigated to determine whether improved
Monte Carlo results could be obtained. Previous methods were based
on the generation of pseudo-random numbers which were then held con-
stant over the discretization interval. The relationships between the

covariance matrix Qw of discrete random sequences and Qw defined in
(2.2) 1s given by
Qﬂd . Qﬂ/T (2.8)

where T {s the discretization interval. An extensive study was per-
formed by Rowland and Holmes (24) on the above method, and some of
those results are used here to evaluate new methods for the discrete
representation of continuous white noise processes.

A new functional approach to the discretization probiem has been
developed in this work, and results are compared with the previous
method in the next section. Suppose several zero-mean random numbers

8, are combined on each discretization interval to form a power

series function of time as
Kook
wd(BO’e]’BZ’”"BK’t) = 20 Bkt

for 0 <t<T (2.9)

The autocorrelation function of such a train of pulses is given in
(26, 27) by

Rw W (t,t+1) =¢ k=0

K 1
2ot (- 8h for |of
My 1{ k (2.10)

B Otherwise
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where QB is the variance of By - The associated power spectral
k
density is
- 11'78‘:1:1 T .
Sy, (0) = L0 €T [0 S £TR (5, t4e)dE]dn
dd . dd
2(1 - cos wT) K 72k-1 \
= b3 ) (2.11)
2 o b, C7EA

Note that the expression in (2.11) takes advantage of the periodicity
of (2.10) and is valid even though the discrete representation of the
given continuous random process is nonstationary.

For the continuous white noise case, the autocorrelation function

in given by the impulse function

Rl = Q8(x) (2.12)

and the power spectral density is determined as

Sww(w) = _éw Qw6(T)e-JwTdT = Qw (2.13)

Equating (2.11) and (2.13) yields

K %1 2 42 648
_ T T T w T w
0W=2,5k % Caar (5 - 1+ 70

- o] (2.14)

from which, by setting w = 0, one may form the approximate relationship
K

Q, = = 0

(T2k+1
k=0 ‘k

kT (2.15)

This is one of the new relationships developed to possibly yield a
mor2 accurate discrete representation of continuous white noise pro-
cesses. Figure 2 shows the representation of the continuous and
discrete white noise processes, including sample functions, autocor=-

relation functions, and the power spectral densities.
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Another method was developed towards the improvement of the
discrete representation of continuous white noise processes. Con-
sider the random process y(t) given by
y(t} = A cos(at + 8) (2.16)

where A is a Gaussian random variable with variance o% and a mean of

zero, o« is a constant, and & is uniformly distributed on the range

(0, 2r). A and o are assumed to be independent. It can easily be
shown that

Ryy(f) - Sg. a - 1§lq cos(at) for |t|<T (2.17)
0 Otherwise

Suppose a discrete rangam sequence wd(t) is generated by applying
(2.16) on an interval<by~interval basis. This sequence may be used
to approximate a given continuous white noise process as before by

setting
o
Q = 2 {,T -Q'COS(M) o [1 - ln}l-]dt

- Ug [] - COS aT] (2.18)
Ta

This is the relationship developed for determining the variance of the
discrete model. The simulation results of this method and the method
developed earlier in the section are compared with the numerical re-~
sults obtained earlier in (24). The method in {2.8) is referred to
as the standard method, and the method developed in (2.9)-(2.15)

is called the slope method. Furthermore, the alternate method in

(2.16)-(2.18) 1s referred to as.the cosine method.
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Numerical Results
Consider the second-order, linear, time-invariant system de-
scribed by
ot
Xy = 2% = 3x, + w(t) (2.19)
Recursive relationships used to generate the random input se-
quence W, for the above second-order system have the form
Y. = QY. (Modulo M) (2.20)

i+l |

Brown and Rowland (28) obtained satisfactory statistical properties

20, and

from the pseudo-random number generator with G = 19971, M = 2
Yo = 31571. The generated numbers are uniformly distributed on
(0,1). These numbers may be converted into a zero-mean, unity -
variance Gaussian distribution by the exact closed~form relation de-
veloped by Box and Muller (6)

1/2

A (-2 1oge Y]) cos 2nY,

(2.21)
z

1/2 ..
> (-2 loge Y]) sin 2aY,

vhere Y] and Y, are uniformly distributed, and Z] and Z2 are
Gaussianly distributed random variables.

Numerical results for this example are shown in Figure 3 with
the average per cent error on the output variance (ox?) versus the
number of Monte Carlo runs for the three methods being compared.
Using a step size T of 0,05, the standard method utilized pseudo-
random numbers with a variance de of Qw/T equal to 20. The case

of K =1 was used for the slope method with the random variables
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B, and By being given equal weight. Several other cases (K = 2,3, and
4) with several alternate weighting methods for the g's were also
simulated, but no significant improvement was obtained. The results
of the cosine method shown in Figure 3 used oi = 6.44, « = 4n, and

T = 0.05. Different combinations of o and 02 were also used in
other runs without improvement. Moreover, the use of Z; ang Z2 from
(2.21) in consecutive intervals as opposed to using only Zys as shown
in Figure 3, failed to yield any improvement. Finally, using alter-
nate values of Z, and/or Z2 did not improve the results shown.
Therefore, the standard method was the best of those tested in terms
of accuracy. In addition, the standard method requires only a single

pseudo-random number per interval, which results in a particularly

simple implementation as shown in Appendix B.

Summary

The direct covariance algorithm was extended in this chapter for
application to iinearized variational equations about the noise-free
solution for nonlinear systems. Numerical results showed that the
algorithm is applicable to those nonlinear systems with low input noise
Tevels and mild nonlinearities. A generalization (29) was proposed for
improving the discretization procedure for simulating continuous
white noise processes on the digital computer. Extensive Monte Carlo
testing on a second-order system indicated that the standard method
developed earlier was both superior in accuracy and the most ef-
ficient for implementation purposes. This efficient discretization
procedure forms the basis for the subsequent Monte Carlo validation

of the computer software package developed in Chapter III.
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CHAPTER III

IMPLEMENTATION OF THE DIRECT COVARIANCE ALGORITHM
FOR LARGE-SCALE SYSTEMS

This chapter deals with the large-scale implementation of the
direct covariance algorithm derived in the Chapter I and extended in

Chapter II. A method for obtaining the exact solution for large-

L S I T

scale 1inear systems is presented, and the problems in implementing

! this solution for large-scale nonlinear systems are identified. The
basic computer software package is developed with a particular

emphasis on its application to large-scale missile systems and is applied
to a thirty-third order math model of a six degree-of-freedom'air
defense missile system. Special problems encountered in the propagation
of noise through the seeker subprogram of the missile are described in

detail.

Exact Solutions for Large-

S5 ity

Scale Linear Systems

The direct covariance algorithm derived in Chapter I is repeated

Sl

here for convenience as

Eoia

P(t) = A(t)P(t) + P(t)AT(t) + B(t)q, (t)BT(t) (1.10)

In component form, (1.10) becomes
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Since P(t) is a symmetric matrix, i.e. pij = Py the number of com-
ponent differential equations in (3.1) is n(n+1)/2, where n is the

system order.
Equation (3.1) can be solved exactly for constant A and B

matrices. Rewriting (3.1) in the vector form yields

p(t) = A“p(t) +r (3.2)
where
p1p(t)
R&t) = p]z(t)
Pon (t)

and A” and r are functions of the components of A, B, and\Qw in (3.1).

-

The solution of the linear vector differential equation in (3.2) may

be written as

- - \
M lpi ) ¢ g8 AT o (3.3)

p(t) = t,

A7 (t-t ) . . .
where e (t to) is the state transition matrix associated with p(t) in

(3.2). This matrix exponential, sometimes denoted by ¢(t-t°), may be

evaluated as

P (t-to) = T+ A (t..to)+ !5,‘.\‘2@',«1;0)2 + ... (3.4)
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Equatiorn {2.19) may be expressed in vector-matrix form by identi-

Jo 1 o} )
A ~l-2 -3' BT (1! AR

Therefore, (3.1) becomes
Pln o Pr ={ 0 1} fPp Plzl (911 912) ’2)
Pl Ppp| 172 3] |Pj2 Py Mz P22 -3

0
Q1) (1) (0 1) (3.5)

fying

Corresponding to (3.2), (3.5) may be written as

Py [0 2 O Jpyy 0
Pia| =12 -3 1] |pyp] + 0O (3.6)

Using (3.3), the solution to (3.6) for P(0) = 0 is

-2t -3t ] ‘4t (3.7)

1}

p(t)

Note that eA’(t°to) has nz(n+1)2/4 elements for an nth order sys-
tem, which expands the computer storage requirements considerably
beyond that required by using the matrix equation in (1.10) to solve
for P(t) by numerical integration. For example, if n = 33, then P(t)

may be obtained from (1.10) by solving 561 equations, whereas
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eA'it"to) would require in excess of one-quarter of a miiiion state
transition matrix element evaluations. Moreover, if A and B are not
constant in time, then the determination of the exact solution of
P(t) in (3.2) is generally not possible. Since some companents of
A(t) and B(t) are always functions of time for nonlinear systems, the
use of a suitable numerical integration formula, such as tne fourth-

‘ order Runge-Kutta algorithm, is recommended for determining P(t)

from (1.10) in general nonlinear cases.

The Basic Software Package

o B 0 b w2 R

SN,

The considerations that were made during the developmeiit of the
software package included obtaining accurate results while using a
minimum amount of computer time, satisfying equipment requirements,
such as computer storage, and determining the range of applicability

for the direct algorithm on nonlinear systems.

' The covariance matrix equation (1.10) was integrated along the
nominal trajectory by using an integration step size for the covariance

equations initiaily as half that of the system equations. The coef-

eSS B SR 05 o oS i M

ficient matrix A(t) for the system equations is a sparse matrix in many

SPRAL

applications. For any large-scale system the coefficient matrix
elements may be categorized as either zero, non-zero constants, non-

TN linear functions of the nominal states, or implicitly related to the

ee—

ncminal states. For example, the thirty-third order missile system
considered here had 920 zero coefficient matrix elements, which were

neglected during program computations. In addition, constant elements

S e Fathw e 3 p SR A L

were defined in the beginning of the program and left unchanged

thereafter. The coefficient matrix was computed at each integration
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interval along with the nominal solution to yield a considerable
savings in computer storage over the method of storing the A(t) matrix
for all time t. Thus, each nonlinear element of A{t) was updated
during each interval. Finally, those coefficient matrix elements which
are rzlated to certain state variables only implicitly, i.e. the
functional relationship is available only via complicated computer
programmed statements, were computed numerically at each interval.
Additional details will be provided following the description of the
large-scale application in the next section.

The application of the direct covariance algorithm to the thirty-
third order noniinear missile system yielded only approximate results
because the accuracy of the direct covariance algorithm for nonlinear
systems depends entirely upon the relative accuracy of the linearizing
approximation for incremental variations about the noise-free solution.
The error in the direct covariance results increases as the nonlinear
terms in the exact incremental equation become more significant. The
time-varying coefficient matrix prohibits the use of the state transi-
tion matrix equations. Thus, an accurate numerical integration tech-
nique was needed to integrate the n(n+1)/2 equations for the symmetri-
cal covariance matrix.

The basic approach in the development of the software package is
shown in Figure 4 in the form of a flow chart. The Fortran 1isting
of this computer software package appiied to a thirty-third order math
model of a six degree-of-freedom air defense missile system is given

in Appendix C.
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Figure 4. Flow Chart for the Deyelopment of the
Computer Software Package




3

Description of the Missile System Application

The large-scale system investigated here is a thirty-third order

math model of a six degree-of-freedom air defense missile system. The

2 RPN R 2h Y X

autopilot subprogram is fifteenth-order, the airframe subprogram which

- s St e = o m v %

includes the missile rotational variables, the translational equations

»
My

of motion, and launcher dynamics is twelfth-order, the seeker is second-

e MRS S "2.

order, and the actuator subprogram is fourth-order. The block diagram
for the thirty-third order missile system is shown in Figure 5 with
details of the autopilot and actuator in Figure 6. The target routine

shown in the figure calculates the target-to-missile relative position

f é and speed and generates line-of-sight signals.

i . Table 1 identifies all states of the missile system and assigns
} ? a specific number to each state. For example, the missile altitude Z
4 f is defined as the twenty-first state and occurs in the airframe

; g subprogram. Table II provides the complete categorization of all

? ; elements of A(t) as either zero, indicated by blank entries, constant
, f values (C), nonlinear functions of the nominal trajectory (NL), or

: j numerically computed (NC). The number and per cent contained in each
? § category are summarized in Table III.,

»% ‘ omputations for Implicitly Related Elements

[
vekaned BRI

g £

Only those elements of the A(t) coefficient matrix which are

1 implicitly related to certain variables are computed numerically. For §

the thirty-third order math model of the six degree-of-freedom air §
2 defense missile system, the numerically computed elements are denoted é
% in Table III by NC. The state identification of these state variables %
*’ i
‘*




R T o R B ) o~y - N -

7
“
<
i
K
4
H
¢
H
3
N
&
#
4

1 2
1 { %eeker

! Target Second~

o g 90S Order) EZ

; A %105 EY

E

E

b Coordinate Autopilot
e Transformation (Fifteenth-Order)

3
>
8 B
= ‘
' .
g s
b N
3 €
L
b ’
i :
s, !
3 :
<
2 . $
. 1
v !
ks |

8
E Airframe ¢ 2] Actuator P a—
3 (Twelfth<Order) 5.1 (Fourth«Order)

2 Sq ;
5 :
N

3
K )
2 %
5 . . ;
» Figure 5. Block Diagram for the Thirty-Third ;
X Order Missile System £
’ g
4 :
2 \
3 1
{
il
; %
e .

'’ :{.




Temm i 4

o T A s

. e o

e S T A AN S S CoED

29

Ve

TRREL T MY £ N IR

s402en3oy pue jo|ldogny ayl Joj weuaberg yoojg -9 asnbL4

(oo soll o B

e ®eor: wa

RO R

.lidmﬂlln\_

o e sojfy + P

S -

v ﬂ_ N 7 M
o F %5/,002 ¥

I 5 Vel B

ol | ¢ 7 in
oM ¥ o002

(2IAA V_ — 1 “.h\ vk
o2 F of02 3

O q_ﬁ. — 1 V*h nv
o3 u.a.\o.g s

e R R

HenBenc

A e M R N O L g -]

5

AN TR

ymi

33

e

BTYEPLE L)

v 1




-+

3
TABLE 1 3
DEFINITION OF THE MISSILE SYSTEM STATE VARIABLES %
g
Subproyram Description of State Iden- State Iden- 1
State Variables tification tification 3
Name §
3
I. Autopilot Guidance Pitch ZP1 1 3
Filter zr? 2
zp3 3
Guidance Yaw Y1 4 p
1 Filter 2Y2 5 7
: Y3 6 4
7 Rol1l Compensa- ZR1 7 E
: tion : ZR2 8 .
2 BPHIS 9 1
£ - Pitch Integra- ZPIN 10 E/
tor ZPI12 11 %
: EODCP 12
5 : Yaw Integra- Y11 13
K tor ZYI2 14 §
: EVNCR 15 ]
II. Airframe State Variables UE 16
g for Evaluating VE 17 g
, the Transla- WE 18 §
E tional Equa- X 19 3
F: tions of Missile Y 20 3
3 Motion. z 21 3
3 Missile Rota- PB 22 M
: tional Variables QB 23
p RB 24 ;
3 Euler Angles THETA 25 :
3 PHI 26
3 PSI 27
III. Actuator Vane Module wW(1) 28 ‘;
9 Variables y(z2) 29 ,
: V(37 30 !
g w(a} 3 |
5 IV. Seeker Internal States ngl.) 32
Vs{2) 33
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TABLE 1II
CATEGORIZATION OF COEFFICIENT MATRIX ELEMENTS

i Categorization Number Percentage
; Zero 920 84.5%

Elements _
f Constant 52 4,8% .
; Elements :
% 3
| Nonlinear 38 3.5% ﬁ
€ Elements :
: 1
; Implicitly 79 7.2% :
f Related ;
3 Elements i
’f Total 1089 100.0% "
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is given in Table I. The elements labelled NC* in Table III are com-
puted to modify the derivatives when launcher dynamics of the missile
system are in effect and are equated to zero after the second lug
leaves the launcher. Numerically, the partial derivatives for A(t) in
(2.6) are given by

flxy + 8%, nys t) - £y s t)

A(t) = (3.8)
AX

where the notation Ax represents small perturbations about the nominal
flight path ZN(t)- These perturbations have small lower limits when
P(t) is very near zero, but ax is increased by adding one-tenth of the
standard deviation of the particular state under consideration when
P(t) is set near zero. Therefore, the numerica'ly computed elements
of A(t) result in an adaptive feature for the direct covariance algo-
rithm.

The large number of sequential calculations for the noise propa-
gation equations results in numerical problems which can be handled
most effectively by using double-precision throughout. To avoid these
time consumina operations, the elements in a particular column of

P(t) were arbitrarily set to zero whenever the corresponding diagonal

element was below 10']0.

Seeker Noise Considerations
For the noise propagation studies, the noise was introduced at
four places in the missile system. The first two places are shown in
Figure 6, and the other two white noise inputs were added to the
seeker subprogram of the missile system. These latter two noise
inputs involved perturbing the Tine-of-sight signals oS (BEPSZ) and

aLOS(BEPSY) generated by the target subprogramas shown in Figure 5.
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These noise signals were passed through the dead-zone as shown in
Figure 7. Two subprograms which were developed to obtain the variance
of noise after passing it tirough the dead-zone are included in
Appendix Cas Subroutines SNOISE and DETARA. These subprograms utilize
the three cases depicted in Figure 8 in which the nominal values of
BEPSZ or BEPSY 1ie below -TMP1, between -TMP1 and +TMP1, or above
+7MP1. The density functions of EZ and EY are each composed of three
impulses at SKSP or SKSY, zero, and -SKSP or -SKSY. The weighting on
each of these impulses is determined by the area of the Gaussian

input signals lying within the different ranges of the dead-zone
noniinearity as shown in Figures 7 and 8. The calculation of this area
is performed in Subroutine DETARA. It should be emphasized that the
dead-zone is a very harsh nonlinearity, which can resuit in a severe
test in applying the direct covariance algorithm. However, the seeker
noise was injected at this point in the system because such noise dis-

turbances do occur in the actual missile system.

The operation of Subroutines SNOISE and DETARA is described here
to demonstrate how to handle noise propagation across a dead-band relay
element, Card 16 defines SIGBEP in terms of the seeker noise input
standard deviation (VNOISD), SGTMP1, and VBEPS., The latter two terms
are standard deviations of the noises due to the random effects of the
position coordinates X, Y, and Z and the seeker state variabies,
respectively, Cards 10 through 15 yield the expression for SGTMP}
in terms of the covariance matrix associated with the X, Y, and Z
states, It has been assumed that these states are Gaussianly distributed
and, therefore, that their fourth central moments are equal to three

times their respective variances. Similarly, the contribution of
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the noisy seeker states are handled by using the same procedure. Cards
17 and 27 identify the region of operation of the seeker relays.

For example, if the relay output EC equals -SKSP, then the relay is
switched to the negative region as shown in the upper diagram of
Figure 8. The distance DIST between BEPS, which represeats the

mean of either BEPSZ or BEPSY depending on which of the two seeker
relay nonlinearities is being considered, is defined in Card 18 as
DIST = -TMP1 - BEPS. HNormalizing this Gaussian density curve by
dividing by the standard deviation SIGBEP to give P0S, one may

use standardized Gaussian density tables to determine the area under
the curve below -TMP1, the area between -TMP1 and +TMP1, and the
area above +TMP1. Specitically, Card 20 yields the desired area
(AL1) from Subroutine DETARA. Note that the total probability of
BEPS lying below ~-TMP1 is one-half plus that area just determined
from DETARA (Card 21). Card 22 defines POS for the curve between
the actual BEPS and +TMP1. The resulting area (AO1) is the sum of
ALl determined above and the desired dead-band area A0, Therefore,
A0 = AO1 - AL1 as given by Card 24. Moreover , since the sum of the
total area under the curve is unity, the probability that BEPS lies
above +TMP1 is AU = 1-AL - AO (Card 25), Similarly, the probabilities
associated with the other cases shown in Figure 8 may be calculated.
Finally, Cards 45 through 47 compute the mean of EC (SIGEC), the
second moment of EC (SGSEC), and the variance of EC (SGSQ).

Summary
The general framevork for implementing the direct covariance
algorithm for large-scale systems has beer described in this chapter,

Numerical results to be presented later have indicated that the two

RS
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seeker nonlinearities are of major importance in determining nonlinear
‘ operating characteristics of the thirly-third order missile system.

In particular, for seeker inputnoise variances of {2 degrees)z, the
direct covariance aigorithm is applicable to a large range of operations
during the mid-portion of a typical flight. Chapter IV describes

the details of a digital computer software package which combinas

Monte Carlo runs for the first and last parts of the flight with

| ;
3 | direct covariance algnrithm results for the mid-portion of the flight.

_{ Humerical results from this combined program are then presented in

| Chapter V.
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CHAPTER 1V

COMBINED MONTE CARLO -~ DIRECT COVARIANCE
ALGORITHM SOFTWARE PACKAGE DESCRIPTION

The digital computer software package is described in this chapter
initially in terms of a computer flow chart of the complete program.
The general effects of incorporating the divect covariance algorithm

into an existing digital computer program are identified, and subroutines

are grouped according to whether major or minor changes are needed to

realize the combined algorithm. Finally, details of these changes are S

R

provided, and a description of the resulting contrcl cards is given

o

for a variety of simulation run conditions.

Computer Flow Chart

oy

Y

General computer software operations are described in Figures 9

v A

through 12, The basic diagram for all operations is shown in Figure 9,
while nominal flight conditions, Monte Carlo simulations, and covariance

calculations are given in Figures 10, 11, and 12, respectively. The

B B R T LU Y

oo .ca

comrination simulation run indicated as a fourth option in Figure 9 is

PP T "2 L et

obtained by using appropriate control cards which combine the operations

s aw a S

described in Figures 11 and 12 over designated portions of the flight. i%

Subroutine Descriptions ?%

The types of changes needed to convert a digital computer program
which yields only nominal trajectory information, i.e. withcut noise, L
are 1ndicated in Table IV, Descriptions of these changes in individual

subroutines are provided in the following paragraphs. %
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HOMINAL

READ
DATA

, y
INITIALIZATION

: CALL SUSR SYSRUN WHICH PRINTS HEADING
| & INITIALIZES LAUNCHER DYNAMICS INDEX,
AERODYNAMICS ROUTINE DERIVATIVES AND TARGET
POSITIONING AND CONTROLS THE CALCULATION OF THE
MISSILE TRAJECTORY AND TARGET INTERCEPT POINT

et

SYSINT IS CALLED TO INTEGRATE THE
STATE VARIABLES USING Rk4

? T=T+07 |

‘ STATE VARIABLES ARE UPDATED BY
. CALLING THE SUBRS WHICH CONTAIN
’ STATE VARIASLES
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MONTE
CARLO
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E INITIALIZATION
k" | A

b ' CALL SYSRUM

3 | IN SYSINT SUBR, INTEGRATE
. THE STATE VARIABLES USING RK4

AT SRR St VA gty O

X g A e KB

STATE VARIABLES
ARE UPDATED

ORI

; ' THE STATE VAR. ARE STORED TO
FIND ENSEMBLE AVERAGES
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s

- STOP
%
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L Ly L i e Rt e

REE = SETIRNEE S S

T
S b R e A e S 45 5% Mg

£ Figure 11. Flow Chart for Monte Carlo Simulations
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TABLE IV

SUBROUTINE CLASSIFICATION

44

MAJOR CHANGES MINOR CHANGES NEW SUBROUTINE NO CHANGE
MAIN SYSRUN INTAZM AUTOPT
TARGET SEEKER SNOISE PRDATA
SYSINT VANEMD RANDU ROTATM

TRANSM RANDG DTLUX1
AERODY RUNGKP FUNCTION
DEAD
BLOCK DATA COEFF FUNCTION
XLIMIT
THRCON COVAR
DETARA TRANS
MDERIV RK4
INITIA
INTRP3
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MAIN

Subroutine MAIN takes care of all the initializations of the
variables used during the flight. The run could be made as Nominal,
Covariance, Monte Carlo or their combinations with proper initializations
given by Cards 149-168 and 180-203. Cards 171-177 are initialized de-
pending upon the type of run chosen. Cards 136-146 are used to read the
initial values of the variables from the cards and to write them on the
disc to be used later in the program for re-initialization during Monte
Cario runs. In Cards 206-243, various variables are initialized which
are used in the program. The Thrust and Aerodynamic Tables are read
in Cards 247-266. The initialization Subroutine INITIA is called
in Card 272. The initialization for Monte Carlo runs are made in Cards
274-302. NUM number of Monte Carlo runs are made in Cards 303-355, The
(NUM+1)th \NUM = number of Monte Carlo runs) entry in the DO loop is for
re-initializations of the variables. Cards 357-375 are used to calculate
ensemble averages and for print-out. The off-diagonal multivariate g
samples are generated for Monte Carlo simulations from specified
covariance matrix calculations in Cards 383-399 and 418-420. If
VTIMEZ2 is greater than or equal to TSTOP, then in Card 381 the program !
is diverted to Card 465. If Monte Carlo runs are made in the latter |
part of the trajectory, Cards 401-455 make (NUM-1) .uns and Card 380 makes
the first run resulting in a total of NUM number of runs. The ensemble-

averaging and print-out is achieved by Cards 456-464,

TARGET ;
In this subroutine Cards 51-79 have been added to calculate the
variances of BEPSZ and BEPSY and their effects are incorporated into

Subroutine SNOISE (Card 16). The details of Subroutines SNOISE and

s
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DETARA have been given already in Chapter III of this report. The
values of the variances VBEPSZ and VBEPSY are transferred to Subroutine
SNOISE through Subroﬁtine SEEKER in Cards 9, 22, and 28, Cards ‘51
and 52 allow the calculation of variances only for the covariance pro-
gram. Cards 54-69 are used to break up the long expression of VBEPSZ
and VBEPSY in Cards 70-74 and 75-79, respectively.
SYSINT

This subroutine calls the integration subroutine (RK4) to integrate
all the state variable differential equations over one time step. This
routine also calculates the nonlinear "A" matrix elements for the
covariance program. The calculation of implicitly related "A" matrix
elements are calculated by calling Subroutine COEFF. The direct covariance
a]gorithm_is obtained by calling the COVAR subroutine and ‘s integrated
by calling RUNGKP,.which uses the RK2 integration method. For the

calculation of the state mean and variance by Monte Carlo runs, the

values of -the state variables and their square are stored at d!fferent

points in time and the ensemble average is calculated in MAIN. ;
Cards 17 to 32 have been added to transfer the variables to other

subroutines as explained in the previous paragraph. Cards 36 to 56 :

are used to store the values of state variables at time VTIMEZ to make

Monte Carlo runs. Also, these values which were stored at time VTIME2

are printed the first time through the program. Cards 59 to 67 are

used to calculate four normally distributed random. number with unity

variance and zero mean for Monte Carlo runs. These numbers are used

in the VANEMD and TARGET subroutines. Cards 86 to 220 are used to

calculate the nonlinear "A" matrix elements only the first time through

the program, Cards 230 - 259 are used to calculate and integrate the

covariance matrix, to check for negative diagons1 elements, and for

s
5
by
A

BT e s s I T e LT
7 P T P PP VNS U TP 3 S S eI SO o



i Ao L
s (i

S s

.
2
b2
s

P RN, R A e & R S 7

B T R

47

print out. Cards 261-281 are used to store the state variables and
their squares at different points in time for Monte Carlo rups. These
values are storad whenever N1 equals K1 in Card 264. Cards 282-294
are used to store the value of state variables only at the switching
time VTIME1, which is needed to calculate off-diagonal terms of the
covariance matrix. Cards 295-296 are used to store the time at which

the state variable values were accumulated to find the ensemble-average.

SYSRUN

Only a few changes have been made in this subroutine, In Card 26
the value of KIT is initialized to zero in MAIN and transferred by a
conmon block in Card 21. This value is changed only in Subroutine
SYSINT Card 40 when the program is switched from covariance to Monte
Carlo to see that the aerodynamics routine, derivatives and target position,
etc., are not initialized when Monte Carlo runs are made for T greater
than VTIME2. Card 63 makes sure that the K is reinitialized to 1 because
the program bypassed Card 53. Cards 120-123 are used to control the
program for Monte carlo runs. The value of KONTER is altered only in
Card 122, Once it attains the value equal to NUM, then KONTER is not

altered thereafter. Cards 146-151 are used to print out the covariance

matrix at that instant in time.

SEEKER
In this subroutine Cards 8 - 10, 20-23, and 26-29 were added to insert

noise into the seeker, and Subroutine SNOISE is called to calculate
the mean and variance across the nonlinearity. These values are only
calculated when the covariance program is in operation. Otherwise,

these cards are bypassed.
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VAIMED

In this routine noise is added in the vane modules when the Monte
Carlo program is run. In Cards 15-18, normaily distributed random

numbers are calculated in Subroutine SYSINT by calling RANDG.

TRALSM

Card 25 is used while calculating implicitly related "A" coefficient
matrix elements in the COEFF subroutine. The value of KK1 is
initialized in MAIN to 1 and is only altered in COEFF and then again
replaced by 1 at the end of the COEFF Subroutine. In Card 65 when KK3
is not equal to zero the program returns to the calling subroutine.
KK3 is initialized in MAIN to zero and is passed through the common
vlock Card 18, The value of KK3 is modified only in the COEFF subroutine

and is replaced by zero at the end of this subroutine.

AERODY

Only two cards were added to this routine: Cards 19 and 23.
The value of KK5 is passed through the common block in Card 19, The
value of KK5 is initialized to zero in MAIN., This value is only modified
in the COEFF subroutine for the calculation of the implicitly related
"A" coefficient matrix elements. The value of KK5 is replaced by

zero at the end of the COEFF subroutine,

BLOCK DATA

Cards 9 and 10 were added to initialize the step size and the
number of state variables decaoted by H and MS, respectively, in Card
9. The step size H is not used at present in thc program but MS is

used at various places throughout the program mainly for DO loops.
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THRCON

Card 13 is added in the routine to preserve the values of THRP
and TIMP while making calculation for "A" matrix elements in Subroutine
COEFF. These values are preserved in COEFF by transferring them to

other variables and replacing them at the end of calculations.

INTAZM
This new subroutine initializes the constant elements of the "A"

matrix only once in the MAIN program through Card 243,

RANDU

This program generates normally distributed random numbers with
zero means and unity variances. The random numbers equal in number
to the number of state variables are generated and passed through variable
YNORM to MAIN by Card 417. These are used for Monte Carlo runs after
time VTIME2 to give random normally-distributed starting conditions

at that point in time.

RANDG
This program also generates normally distributed random numbere
with zero means and unity variances. These numbers are transferred
through variable XNORM when called in Subroutine SYSINT through Cards
64 and 67. These normally distributed numbers are used to insert
noise in the vane modules and the seeker during Monte Carlo simulations

at locations in VANEMD by Cards 15~18 and in TARGET by Cards 48 and 49,

RUNGKP
This subroutine is an integration routine and the RK2 method of
integration is used to integrate n(n+1)/2 equations where n is the

number of state variables. This routine is called in SYSINT (Card 236).

/e o
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The value of DTH is transferred from SYSINT via Card 231.

COEFF

g . This subroutine calculates the implicitly related "A" matrix co-

: efficients. In all, 79 elements are calculated in this routine. The

E values of the KK's are defined in Cards 38-42. These are used throughout

! the program to control the required calculation of the "A" matrix elements.
The nominal trajectory is perturbed slightly (Cards 43-46) to calculate

the effect of this perturbation and thus obtain the "A" matrix elements.

B E X LT P R

Card 47 sends the routine to Card 69 to store and preserve the nominal
trajectory variables so that those values can be replaced after the

D . f calculations., Card 116 then sends the program to Card 342 to calculate
the effect of the perturbation. In Card 358, Subroutine MDERIV is called
only if LAUNCH is one or two. The "A" matrix elements denoted by NC*

in Table II on Page 31 are equated to zero after LAUNCH is greater than

e s

2 only once in Cards 362-366. Since the value of KK& is one, the

LSS e g

f: program goes from Card 359 back to Card 183. In Cards 183-191, the

next value of the state variable is perturbed and the program goes

e T e
S 2 Y

; to Card 117,where the A matrix elements are calculated, Since KK3

3 was 7, the program goes to Card 138 to replace the values of those

Lo

variables which were stored and preserved earlier. The program again

goes to Card 69 from Card 182 to repeat the same procedure for the

RO R cae
o AV R S 4

next state variable.

COVAR ¢

In this program the covariance algorithm is implemented. Since
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matrix is calculated. In Cards 95-97 the PAT matrix is obtained.
Cards 98-100 give the AP + PA' matrix. The BQB' terms are added in

Cards 101-111.

MDERIV
This subroutine has been added to modify the derivatives when the

launcher dynamics are in effect. It is called in the COEFF subroutine

(Card 358) during the calculations of the implicitly related "A"

matrix elements. This program is a part of the ROTATM subroutine (Cards

49-72) with a change of variables.

Summary

The details of the combined computer software package have been
presented in this chapter. Flow charts have been provided to describe
the nominal flight, Monte Cario simulations and the direct covariance
algorithm. It should be pointed out that Cards 149-203 in MAIN
describe the necessary modifications to run any of these cases,
including the combination run. Numerical results using this software

package are given in the following chapter.
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CHAPTER V

NUMERICAL RESULTS

Both preliminary and final numerical results are presented in this

TR

chapter for the six degree-of-freedom air defense missile system

described in Chapter III. Initially, tradeoff considerations and simpii-

R L s .

fying approximations are given. Direct covariance runs on the range

from one to two seconds into the flight are then presented for modifications
yielding from thirty-first up to fifty-first order missile systems.

Core and speed requirements for these different systems are identified.

It is shown that the initial and terminal portions of the flight are

too nonlinear for the application of the direct covariance algorithm ? A
and, therefore, that Monte Carlo simulations must be utilized on these
: : highly nonlinear segments. Final numerical results are presented for

the entire flight by using the combined software package of Chapter

g v,
% Tradeoff Considerations
1 The considerations that must be made during tradeoff studies

are closely related to the criteria for comparison purposes presented
in Chapter I. Since the information provided and the extension pos-

sibilities are fixed by selecting the direct covariance approach, only

whan s hrtria s AR BATRAO P Y A o e Iy e A
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the remaining criteria of accuracy, computational speed, computer
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storage, and program complexity may be used for tradeoff possibilities.
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Accuracy

Accuracy pilays a major role in achieving computational efficiency,
since it has an inverse relationship with the computational speed. For
example, trading accuracy for computational speed by changing the inte-
gration method from the fourth-order Runge-Kutta formula (RK4) to the
second-order Runge-Kutta formula (RK2) may reduce the computation
time considerably for large-scale systems. In any simulation probiem
the minimum acceptable accuracy level limits the maximum integration
step size that may be chosen. Tradeoffs for the large-scale system
are also influenced by the fact that direct covariance technique gives
exact results for linear systems while the errors in the results of
nonlinear systems depend on the amount of nonlinearity and the input
noise level. In addition to the choice of integration method and the
selection of the step size, the frequency at which the coefficient

matrix is updated affects the algorithm accuracy.

Computational Speed

Tradeoffs may be used to minimize the computer time needed for
the large-scale simulation and the application of the direct covari-
ance algorithm. For the developed software package, the integration
time needed for the covariance matrix equations may be reduced by
nearly one-half by changing the integration method from RK4 to RK2, as
mentioned earlier. A savings in computer time is also obtained by
categorizing the coefficient matrix elements as zero, constants,
noniinear, and implicitly related to the state variables. Since the
A(t) matrix is usually a sparse matrix, many coefficient elements are

zero and thus neglecting them entirely during the calculations
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reduces the computer time considerably. Table III summarizes this
categorization for the thirty-third order missile system described in
Chapter III. Finally, further reductions in computational time may be
achieved by calculating the A(t) coefficient matrix elements after

every few integration intervals instead of every integration interval.

Computer Storage

The computer storage needed for applying the software package to
the large-scale system can also be reduced by tradeoff. The general
implementation of the direct covariance algorithm for large-scale
systems requires a much higher computer storage as compared to a par-
ticular implementation. For an nth-order system, storing the large
A(t) and B(t) matrices requires a large amount of computer storage.
This may be reduced by deleting the zero elements and either con-
verting these matrices into smalier matrices or to vector form. How-

ever, this procedure would tend to increase the complexity of the

computer software package.

Program “omplexity

The program complexity is another measure of an efficient computer

software package. The general implementation of the direct covariance
algorithm may reduce the program complexity to a minimum, whereas a
particular implementation makes it quite complex. The complexity

also increases, as noted above, by converting A{t) and B(t) in smaller
matrices or vector form. Thus, a balance must be reached by trading
accuracy, computational time, computer storage, and program cemplexity

to provide a computationally efficient final software package.
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Program Simplifications
7; Simplifying approximations were used for speeding up the direct
5 1 covariance program. The use of constant coefficients in place of
f slowly-varying coefficients in the variational equations and neglecting
extremely small coefficients entirely were approximations that were
examined. In particular, 28 of the 38 nonlinear elements of the
incremental coefficient matrix A(t) were held constant throughout
the flight period of interest without a serious degradation in

results. Furthermore, 18 of the 79 numerically computed elements were

: : also simplified, and their effect was negligible on the performance

of the direcc covariance software package. Finally, the possibility

of computing the "A" matrix elements at different varying intervals

was investigated, but it was shown that the necessary overhead operations
made such a procedure unfeasible.

K The calculation of all "A" matrix elements automatically i.e.
numerically, was shown to require a computation time that wes much

too long. However, such operations yield, in general, the simplest

i possible program. For a fifty-first order missile system, this simplest
program for computing all 2601 "A" matrix elements requires approximately
27 minutes on the Sigma 5 Computer for computations in the range

between 1 second and 1.1025 seconds into the flight. The minimum

N computational time possible was only approximately 5 minutes obtained

by using constants and nonlinear expressions wherever possible as

_—

indicated by Table III in Chapter III., Also, the zero elements

e BRI @ 4D i v b APETHEERIIE Lt 4, 0T

were not computed. The resulting program was obviously more complex

than the general program. An intermediate possibility which required

approximately six minutes for the given calculation was also identified
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by eliminating a large number of the zero-element caiculations but
including certain of these elements when they are grouped within a
given block of non-zero elements. For the direct covariance algorithm,
approximately 36K words of core (including the monitor) are needed
to perform noise propagation calculations for systems up to fifty-

first order.

Preliminary Numerical Results

Significant problems were encountered in impliementing the direct
covariance algorithm for the initial portion of the flight. These
problems are discussed in detail later in this section. Because of
these problems, comparisons between Mcrnte Carlo simulations and co-
variance runs were made on the range between one and two seconds into
the flight. Numerical results are shown in Figure 13 for several orders
of missile systems.

The thirty-first order system was obtained from the thirty-third
order system in Figure 5 by neglecting the dynamics of the second-
order seeker subprogram. The thirty-seventh order system included
the addition of two second-order filters (pitch and yaw rate gyros)
in the autopilot. Tests were also made by using two seventh-order
colored noise prefilters for the actuator noise inputs to yield a
fifty-first order system. The comparisons between Monte Carlo simulations
and these covariance results indicate that existing errors may be
attributed to the use of only 25 Monte Carlo runs. These tests were
made by using seeker input noise signals with variances of (2 degrees)z,
which are later shown to yield excessive miss-distances. The seeker
characteristics used earlier in a terminal homing simulation on the

hybrid computer at the U, S. Army Missile Command had noise variances
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on the range between (0.15 degrees)2 and (2.0 degrees)z. However
noise inputs at the lower level of this range yielded poor comparisons
between Monte Carlo and covariance results.

It was shown that for seeker input noise variances of (2 degrees)2
the direct covariance algorithm could not be used for either that
part of the flight up to one second or that part beyond twelve
seconds. In those regions of operations, harsh nonlinearities prohibited
the necessary linearizing assumption described in Chapter II.

Finally, the computational times and core requirements are given
in Table V both for the one-to-two second interval and for the entire

missile flight of approximately 12.9 seconds. These numbers are hased

on the assumption that the direct covariance algorithm would be used
for the entire flight. Since this assumption has been shown to be
invalid, these computational times will be increased for the combined

computer software package described in the following section.

TABLE V
COMPUTATIONAL TIMES AND CORE REQUIREMENTS

Computational Time (Minutes)

System Part of Flight Entire Flight Reca;:!mants
Order (1.0 to 2.0 seconds) (0 to 12.9 seconds) ?Nords)

31 5.2 4 27K

33 5.6 44 28K

37 6.2 49 31K

5] 9.1 72 36K

3
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Numerical Results for the Total Flight

The combined Monte Carlo-direct ccvariance computey software
package was run on the existing computing equipment &t the U. S. Army
Micsiie Command for the entire missile flight of 12.9 seconds. The
computer run time, which included 25 Monte Carlo runs for certain
portions of the flight, was approximately two and a half hours. It
was shown above that both the launch segment and terminal mode of
the missile flight are too nonlinear for the application of the
covariance algorithm. Therefore, the sequential application of tne
Monte Carlo program for the first second, the covariance program for
t=1tot= 12 seconds, and the Monte Cario program for the final
0.9 second has been utilized to form the completed software vackage.
The 2 1/2 hour run time for the combined program would be reduced to
only approximately 45 minutes (Table V) if the missile nonlinearities
had been mild enough to permit the use of the covariance algorithm
on all parts of the missile flight. On the other hand, approximately
5 hours would be required for a complete Monte Carlo evaluation of
25 runs on the given system. How *, a much larger number of runs
(at least several hundred) would be needed to yield the high
accuracy obtained by the covariance algorithm during the mid-portion

of the flight.

Final numerical results for the total flight of approximately
12.9 seconds are given in Figures 14 and 15. Figure 14 shows the
variances of X, Y, and Z as functions of time for the range on which
the direct covariance algerithm is used. This curve demonstrates that
the state covariance matrix elements of interest, i.e. P(19,19), P(20,20),

and P(21,21), each increase monotonically on the given range. Figure
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Figure 14,

Position Coordinate Variance Versus Time
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15 shows a sketch of the probability distribution function of the miss-
distance obtained from Monte Carlo runs in the terminal mode of the
flight. It is apparent from Figure 15 that the seeker input noise
levels of (2.0 degrees)z were considerably too large to yield reasonable
miss~distances.

Correlated multivariate samples from a Gaussian density function
equal in number to the order of the system were generated to yield
the appropriate random state at t = 12 seconds for Monte Carlo siLu-
lations during the terminal mode. These samples were obtained by
generating n unity variance independent Gaussian random nunbers (xi)
by standard procedures. As shown by Marsaglia(30), the desired cor-
related random numbers (yi) may be obtained from the triangular trans-

formation
Y1 % 99%
Yo = 910%)  9pp%s
Y3 = 913%) ¥ Gp3%p t 933%3 (5.1)

Y = 9kXy tOgXoteee oot GpXy

where the desired covariance matrix R is used to solve for G from

R = GG (5.2)
It can be shown (30) that the resulting elements of G satisfy
91 7 My
93Tyl
j izl (5.3)
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These calculations are included in MAIN by Cards 383-399 for the thirty-
third order missile system, and the results are used in Cards 418-438.
The mildly nonlinear segment(s) of the missile flight which are
amenable to solution by the direct covariance aigorithm are affected by
the nonlinearities themselves and the input noise levels. In particular,
noise levels of (2 degrees)2 on the seeker nonlinearities were used
to obtain the results reported above. It has been shown that the region
of applicability for the covariance algorithm is decreased as these
noise levels are decreased. Though complete data is not available, the
sketch in Figure 16 indicates typical results which one may expect.
For example, levels of (0.15 degrees)2 y1elded inaccurate covariance
results for the range t = 1 to t = 2 seconds. However, excellent
results were obtained on this range for (2 degrees)z, but excessive
miss~distances result frcm such large noise levels. While the combined
software package has exhibited excellent accuracy and computational
speed properties for this case, its use on cases yielding acceptable
miss~distances will depend on the harshness of the predominant system

nonlinearities as well as the exactness of the simulation model itself.

t (2°)2
Seexer
ﬁg?gﬁ Direct Covariance
Variance Monte Algorithm Monte
Carlo Carlo
0 s -
0 ) . }
flight time —— te

Figure 16. Sketch of a Typical Range of Applicability of
the Direct Covariance Algorithm

x
i
i
3
Eﬁ
k2 R s A oS YR PO T DY

Fa NNRRIE e

S

LU il 8 Seto as? un e st 30 ke v

g L ok s ¥ T L A B N P P

AR

e ARt g

AL PNEPy

L




63

Summary

Preliminary and final numerical results have been presented for

the six degree-of-freedom air defense missile system. The direct

covariance algorithm implementation was verified by comparing with :
25 Monte Carlo runs on the range from t = 1 to t = 2 seconds. There- :
after,a combined computer software package was formed by using the
direct covariance algorithm on the mid-portion of the flight between .
t =1 and t = 12 seconds and the Monte Carlo technique on the launch 4
and terminal parts. Finally, it was indicated that the range of
applicability of the direct covariance algorithm decreased significantly

for the given missile system for lower values of seeker input noise
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CHAPTER VI

FINAL GUIDELINES f

A combined Monte Carlo-direct covariance digital computer software
package for missile system analysis has been developed and tested. The

completed software package is capable of handling noise propagation

calculations for large scale-missile systems up to approximately

T odw 2T AR LT W ¥

50th order. This computer program has been tailored for use on the
existing Sigma 5 equipment at the U. S. Army Missile Command. 1In
particular, the most important considerations are the resulting accuracy,

computer core requirements, and program complexity. Since 48K words

S INL N L, —‘);”k&w&c»’%«z.;n

Y

of core storage are presently available, the combined software package

28y o2

can be used without modifications for lower core requirements (Table V)

on large-scale missile systems at the U. S. Army Missile Command.

Accuracy levcls have been established for the six degree-of-
freedom air defense system described in earlier chapters of this final
report. It was shown in Chapter II that the use of only 25 Monte

Carlo runs should be expected to yield errors on the order of 30%

to 35%. frigure 14 in Chapter V shuas that the direct covariance
algorithm results differed from the results from 25 Monte Carlo simulations
by approximately 30%. Therefore, the accuracy of the direct algorithm

was established for the mid-portion of a typical flight. This same

3Ly Ta e P Kt Avere D B 0 i L it K

comparison technique indicated that Monte Carlo simulations should

byt

be used for the launch and terminal modes. Therefore, a combined

pae

Monte Carlo-direct covariance package was developed for use on a
wide range of typical missile systems. Some simulation experience

is needed on a given application to determine that part of the flight
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for which the direct covariance algorithm should be used. This
experience is usually obtained during the initial simulation effort
for the noise-free case,

Tradeoff possibilities with respect to accuracy, computational
speed, computing equipment requirements (including storage), and program
complexity were examined. It was shown that the RK2 integration
formula represented an efficient tradeoff between speed and accuracy
¢ covariance matrix calcuiations. The use of a general program for
comy: ing all elements of the "A" matrix was found to be inefficient.
A more suitable approach involved the use of constant elements, nonlinear
elements, and implicitly related elements in the proper framework,

The resulting program was somewhat more complex in format, but the
savings in computational time was significant.

Finally, simplifying approximations were developed to speed up
the operation of the combined software package. Constant coefficients
were used to replace slowly-varying elements of the "A" matrix., It
was shown that during the large mid-portion of the flight, where the
direct algorithm was applicable, an important approximation involved
the propagation of noise through the seeker relay nonlinearities.
Output variance calculations for these relays were achieved from
Subroutines SNOISE and DETARA. If corresponding calculations could
be performed for the large number of nonlinearities in the launch and
terminal modes of flight, then the direct covariance algorithm could
be utilized over a larger range of tne total flight. As indicated

in Figure 16 of Chapter V, the applicability of the direct covariance
algorithm is also determined from the noise input levels. The proper

handling of these nonlinearities will yield for given applications
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even greater improvements by using the combined software package.
Related Work

Comparisons between the combined software package described in
this report and other approaches to noise propagation in large-scale
nonlinear systems are provided in (33). Results on sensitivity analysis
for noise propagation problems are included in (34). Both of these
papers, as well as others, are reproduced in Appendix A of this report.
As suggested in Chapter I, an immediate extension of the noise
propagation capabilities of the combined software package to filtering
applications is possible. In particular, the subsequent development
of an efficient software package for Yalman filtering as a practical

estimaticon algorithm is recommended.
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APPENDIX A

REPRINTS OF SELECTED PAPERS

This appendix contains the reprints of five selected journal

and conference publications which are closely related to the work

of this contract. The first of these papers, which has been listed

as Reference (25), describes the application of the direct covariance
: | algorithm to computer-aided electronic circuit analysis and design.
| This journal publication is based on results presented earlier in U, S.
Army Technical Memorandum RG-TR-71-19 (Reference (24)). An extension
o of other results in Reference (24) on sequential covariance matrix
E calculations was presented as a conference paper at the 1972 Southwestern
‘é ' IEEE Conference in Dallas, Texas. This paper, listed as Reference
(31), is included as the second reprint in this appendix. The third
reprint, Reference (32), describes a general formulation of the optimal
o digital simulation problem discussed for specific cases in Chapter
II of this report., A brief survey of noise propagation techniques
for targe-scale nonlinear systems is included as the fourth reprint
(Reference (33)). Finally, the fifth paper included here describes
3 a stochastic algorithm for sensitivity analysis. This new result

(Reference (34)) provides error tolerance bounds on covariance matrix

L Y o 7P

elements due to incompletely specified input noise variances.
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A direct covariance algorithm for computer-aided
statictical electronic circuit design
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N Guidance and Control Directorate (AMSMI-RGN), Research,
3 Development. Engineering and Missile Systems Laboratory,
b ! U.S. Army Missile Command, Redstone Arsenal, Alabama 35809
‘ [Received 21 May 1973]
Y ' A direct covariance algorithm ix presonted for handling problems of component
4 tolorance analysis and random input variations with a particular emphasis for
B . utilization in computer-aided statistical cloctronic circuit design. It is shown that
b this result is applicablo to a wido range of electronic circuit arrays having non.linear
K components. Moreover, a systematic procedure is developed for predicting in
é advance the expected accuracy. Numerical results comparing the direct covariance
algorithm with up to 1000 Monte Carlo ensemble-averaged computer runs are
b provided. Contrary to popular belief, errors of 10 to 259% are obtained by us‘ng
., 26 to 100 Monte Carlo runs, Improvements in both accuracy and computational
& speed clearly demonstrate that the dircct covariance algorithm is a versatile and
B> effective computer.aided design tool.
b
3 1. Introduction
i Noise problems inherent in practical circuit designs are frequently identified
3 only after the basic design has been completed and production testing has
begun. Rarely do statistical performance design requirements proceed parallel
L with other design requirements. A first step in establishing thess statistical
design requirements is the development of a fast, effective statistical analysis
4 tool for use during the preliminary design. While the traditional Monte Carlo
; method provides acceptable statistical results by using a sufficiently large
number of digital simulation runs, its frequent use during the design stage
4 can become prohibitively expensive. As a circuit array increases in size and
e complexity, digital computer time for & single simulation run goes up very
H rapidly. Repeated runs further increase the computational time and associ-
o ated computer costs. An efficient, easily applied, statistical analysis technique
& having a reliable accuracy is needed to pinpoint potential noise problems
~ during the developmental stages of electronic circuit design.
o The increasing emphasis on statistical analysis techniques in computer-

aided circuit design has resulted in expanded programmes for handling problems
in component tolerance analysis, modelling, and simulation. [For example, an
Z extensive continuing programme in computer-aided statistical circuit design
i has been described by Dickieson and Chernak (1971). Semmelman et al.
(1971) and Cermak and Kirby (1971) have discussed present state-of-the-art
capabilitics for linear and non-linear computer-ai?~d statistical circuit design.
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Furthermore, Logan (1971) described the characterization and modelling of
components for tolerance analysis. and Karafin (1971) used tolerance analysis
for optimum design. More recently, Pinel and Roberts (1972) treated the
tolerance assignment problem for linear networks on a worst-case basis by
non-linear programming.

This paper uses the state-space approach, described for circuit analysis
and design by Pottle (1966) and Yuarlagadda (1972), to develop a direct co-
variance algorithm for determining the effects resulting from random input
andfor component variations. Related reenlts by Irwin and Hung (1967),
Kuhnel and Sage (1969), and Rowln~.a and Holmes {1971) have been used
for large-scale, non-linear systeme m acrospace applications. Thesc results
were hised on earlier work in linear filtering theory by Kalman (1960). The
contributions of this paper are (1) the development and application of the
direct covariance algorithm for linear and non-linear circuit analysis problems,
(2) the development of an accuracy prediction scheme for estimating in
advance the range of applicability in non-linear cases, and (3) numerical
comparisons showing the need for a very large number of Monte Carlo runs
for comparable aceurscy.

2. The direct covariance algorithm
Consider a non-linear circuit whose dynamical response may be expressed
in state variable form as

x=f(x, r(f). w(t), «, ¢) 03]

where x is an n-dimensionul vector representing the circuit state, v(f) is a
k vector of non-random inputs, w(t) is an m vector of random process circuit
inputs andfor parameters. and « is & j vector of random bias (i.c. random
variable). cireuit inputs cnd/or parameters. As indicated, the n vecvor f is a
non-linear ‘unctional of those vector arguments shown in eqn. (1).

Let the mean values of w(t) and « he represented by 7,, and 7, respectively.
Observe that the distinction between the random vectors w(f) and a is that
w(l) is a white noise random process while & is a random variable that is
constant in time. Let the covariance matrices of w(t) and a be defined by

E{(w(t) = 0 (0)(i(7) ~ (7)) T} 2 Q1)L - 7)

B{(e- 9.)(a—-7,)T}2Q,

where 8( - ) represents the delta function.

it is assumed that f in eqn. (1) is a sufficiently smooth functional of its
arguments such that its first partial derivatives with respect to x, w(t) and
a exist. Let f be expanced in a Taylor series about the noise-free solution
xx() to yield from eqn. (1) the linearized incremental equation given by

8% = A(1)6x + 2{t)bw(t) + C(t)5a (3)

(2)

where the noise-free solution is the solutior of ecn. (1) obtained by replacing
the noise vectors w(f) : .d a by their mean values, i.c.

k\'(t) =f(xNa -.(t)’ nwy Nar t) (4)
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Morcover, the matrices A(t), B(t) and C(f) in eqn. (3) are used to represent
first partial derivatives defined by

A(f)é.if
oxX

N

of

A&
By & T (3)

N
of
e —
‘o

N

where the subscript N is used to denote that the partial derivatives are
evaluated at the nominal, or noise-free, condition. Finally, the incremental
variations in x, w(!) and « about their nominal values are given by

B A x(t) - ()
Sw(t) & w(t)—n.(0) (8)
§xba—y,

It is assumed that these incremental variations are sufficiently small sach
that second and higher-order Taylor series terms in eqn. (3) may be neglected.

The statistical analysis problem under consideration is to determine the
state covariance matrix P({) which results from the presence of random
vectors w(t) and « in the dynamical eqn. (1) of the particular circuit. It is
shown in the Appendix that P(t) satisfies the matrix differential equation
given by

(Pty=A@)P(t)+ P(t) AT(t) + B(1)Q,,(t) BT(t)
+CQHATH +HNQLTE ()
where
P(t) & E{6x5xT}

t (8)
2@ A § o, 7)C(r)dr
]

and B(t, 7) is the state transition matrix associated with 8x in eqgn. (3).

The matrix equation in eqn. (7) is exact for the linear, time-varying
incremental equation for 8x in eqn. (3). However, since second and higher-
order terms in the Taylor series expansion of f have been neglected in arriving
at eqn. (3), the application of the direct covariance result in eqn. (7) must be
recognized as providing only an approximate analysis for the non-linear
dynamical circuit in eqn. (1). Particular examples described in the following
section demonstrate that the lincarization assumption is justified for low-
noise, mildly rn-linear circuits,
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3. Numerical results

Two examples are presented here to illustrate the usefulness of the direct
covariance algorithm for circuit analysis as well as to indicate its limiitations
in certain highly non-linear cases. [ollowing a brief first example involving
a simple RL series circuit with R being treated as a random variable, com-
parisons with the Monte Carlo approach are made for a non-linear, second-
order, cascaded RC ladder circuit. The need for ensemble-averaging a very
large number of Monte Carlo simulation runs for comparable accuracy is
demonstrated, and the resulting advantages of the direct covariance approach
ure clearly identified.

Example 1

Let the resistance R in a simple RL series circuit be represented as a
random variable that is uniformly distributed on the range between np— R,
and 5, + R,, where 75 is 10 ohms and R, is allowed to assume several constant
values for purposes of comparison. Elementary considerations may be used
to show that the variance of R is rclated to the bounds on the probability
density function by Qp=R,?3/3. Morcover, let the source be a d.c. voltage
of magnitude V, =100 volts applied for all ¢>0, and let L be 100 millihenrys.

The voltage v, across the resistor, initially zero, obeys the scalar dynamical
circuit equation given by

R R

13”= ——I';' UR‘*“,: V., (9)

with a noise-free solution defined by
VRN(C.)-'-‘ til —cxp (—"I)ntIL)] (10)

The linearized incremental equation corresponding to eqn. (3) is

Even though the series RL circuit itself is linear, the appearance of the term
with R in eqn. (9) as a product with v, forces the problem into a general
non-linear framework and requires the usual linearization assumption of
sufficiently small variations.

Inserting eqn. (10) into eqn. {11) and identifying the system coefficient
matrices in eqn. (3) yiclds the covariance matrix differential equation from
eqns. {7) and (8) as

Pit)= - "’" 2340 W2 e o (- 20a4iL) (12)

VIR
3L’
which has the closed-form solution (for P(0}=0) given by

2
l’(l)—l R° 12 exp (= 2qgl/L) (18)
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Using eqns. (9) and (10) with basic definitions from probability theory
provides the exact solution P_.(!) for the variance of the voltage across the

resistor as
ax+ B et
Pol="f [V,|1~exp(-’?’/"”" g, Yt s =il
1 2
wl—\a — }dR
:xp (2RL) —exp (- 2Ryt/L
= V2exp (- 2,t/L) [o\p( A ;Ro:/);lp( :
exp (Ryt/L)—exp (~ Ryt/LY\? (14)
- 2R /L

Comparisons between this exact solution and the approximate result in eqn.
(13) from the direct covuriance approach are presented in fig. 1 for the given
conditions. These two solutions differ only slightly for rather wide ranges
of R, for this mildly non-linear application of the direct covariance algorithm.
Furthermore, the large magnitudes obtained in fig. 1 for the resistor voltage
variances indicate that close parameter tolerances can be quite important in
circuit design considerations.

Fig. 1
80
o Direct Algorithm
R =k
[¢]
Resistor 60
Voltage Ez;ct- L)
Variance [
{volts?)

k0 Direct

Algorithm

20

Time (msec) e

Comparisons between the direct covariance algorithm and the exact solution showing
the variance of the resistor voltage for Example 1.
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Ezample 2
Consider the second-crder non-linear circuit shown in fig. 2 and represented

dynamically by

1
Y I —— — t
Y RIC‘ v1+ Rlcl vs( )
(15)
1 K Ky

dg= X v0+R20,2 v1+R202 vy |vy|

where R,C,=1, R,C,=4%, and the source v,(¢), applied for all >0, is a zero-
mean Gaussian white noise input with variance @,,. The operational amplifiers
are included for amplification, isolation, and summing. The initial voltage
on C, is zero, but v,(0), @, and the constant scalar parameter y are allowed
to assume different values as indicated below.

The purposs of this example ia to present comparisons with Monte Carlo
simulation runs and to demonstrate tho range of applicability of the direct
covariance algorithm for non-linear electronio cironit analysis, Figure 3
ghows ourves of ensemble-averaged Monte Carlo runs performed on the digital
computer for the linear case (yw=0) with @, =1 and v;(0)=0. The variance

Fig. 4

t:o ¢

0, °08
vy{ol=0

10

AVERAGE PERCENT ERROR IN OUTPUT COVARIANCE

0 0.01  0.02 0.08 0.10 0.20
¥ (L0°|o SCALE} PR—

Variations in average per cent error in the output voltage variance versus y for the
direot covariance algorithm applied to Example 2.
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Covariance algorithm for computer aided electronic circuii

curves are uscd in the following section to estimate the accuracy expected
from the direct covariance algorithn by examining the non-linear circuital
equations directly. Moreover, fig. 5 indicates not only that this approximate
algorithm might be unacceptable for highly non-linear circuits but also re-
emphasizes the carlier result that a very large number of Moate Carlo runs are
required to obtain accurate results.

4. Accuracy prediction

It would be desirable to be able to predict in advance the accuracy of the
direct covariance algorithm for non-linear circuits. An exact prediction of
the expected accuracy is not possible because exact analytical solutions
cannot be found in general, for the output variance of non-linear circuits.
However, the result from a large number of Monte Carlo runs may be regc xded
as a reference solution for the purpose of accuracy prediction, but even then
(as shown in fig. 3) some inaccuracy is present. The reason for using the
direct covariance technique is to avoid the time-consuming Monte Carlo
approach.

Suppose the Monte Carlo runs had been made for one particular design
condition (parameter setting) of a given electronic circuit. Using this
information, the following procedure couid be used to estimate the accuracy
of the direct covariance algorithm for sufficiently small changes in the para-
meter settings. As a particular example to illustrate the procedure, consider
the exact incremental equation associated with eqn. (15), i.e.

= = By = e ()

{
R, TR,

(16)

K Ky
8vy + [l + 2y vy | Ix 0y + 5~

N o

mc ouy?

Suppose that the non-linear term in eqn. (16) is required (0 be not greator
than k9, of the corresponding linear terms, i.c.

k -
l')’s”lnlsm | = 28v5+1 +2y|vy| )] (17)

where K =2 and R,Cy=1} have been substituted into eqn. (17). Squaring
and taking expected values yields

k ,
Y (30601 )< (100) [4°Jv02+ {l + 27'”1' ].\'2 adm‘
+4(1+2y|v|In | E{Svo6v,}]] (18)

Note that £{8v,*} has been approximated by 3c,, ¢, which is exeot in this
case because 8r, is Gauszian. Using the steady-state values of tne variance
terms obtained from the linear case (y=0) yields

081'02‘:'%0 ; Udmz:%u‘ ; r:500801}=%0 (19)
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Substituting equ. (193 into eqn. (18) ives. after zimplifications,

3700<(105) 173 142t =Bl nmtt) (20
The equality in eqn. (20) is plotted in tig. 6. which shows that as either y or
Q,. increases, the per cent k of the sceond incremental equation in eqn. (16)
caused by the non-lincar term increases rapidly. Using the information in
fig. 6 together with figs. 4 and 5. the per cent error in the output variance as
a function of the parameter k may be plotted. The sketch for varying y and
Q, is shown in fix. 7. If k is less than 3%, then the error in the output
variance is less than 5%. However, for £=109%, the error in the output
variance is approximately 309%. 1f y and Q,. are such that k is approxi-
mately 109%,. then the direct covariance algorithm compares in accuracy to
approximately 25 Monte Carlo runs (30% error). However, if k=39, then
the accuracy of the direct covariance algzorithm is better than 206 Monte
Carlo runs. Therefore. k may be computed in advance from the incremental
cquations to determine the expected accuracy and the number of Monte
Carlo runs which would yield approximately the same accuracy as the direct
covariance algorithm for the given non-linear circuit.
These ohservations on the accuracy of the direct covariance algorithm as
a function of the quantity k are precisely correct caly for the single example

Fig 6
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S Ve
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Plots of k versus y and Q- for the non.lineer citeuit in eqn. (16).
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Fig. 7
” /
Q,, VARIES
a)
z /
5 ¥ VARIES
<
g 20 A\ /
5
[+]
z
-4
Q
-4
&
.
z
8
-4
§ 10
w
Q9
<
-4
¥
«
00 5 10

K g

Plots of per cent ervor for the dircet covariance algorithm versus k for the circuit
described by eqn. (15).

considered. However, it can be expected that other similar second-order
circuits with parameters sufficiently near those of the previous example
would yield results with corresponding accuracy. In particular, it should be
expected, as shown in fig. 7, that the average per cent errer in output variance
would be on the order of threcs time the value of k. Moreover, some useful
information would be obtained even if this error varied by as much as two to
four times k. Howcver, variations of from 50 to 100 times & would be un-
expected.

Monte Carlo simulation experience is usually available on those electronic
circuits where noise disturbances have been a problem. Curves similar to
thoge in fig. 7 can be plotted for the particular non-linear circuit being con-
sidered.  As statecd previously, these curves can be used to yield «.pproximuie
estimates of the accuracy of the direet covariance algorithm in given situa-

tions

5. Software prckage d.velopment
A digital computer software package for implementing the direct co-
variance algerithm for large-scale circuits and systems has been developed.

s I P ;R e o At iy
e e SR B et A Tt e BN TR L0 0 65 BB 1 8?0 e o st e €Al A 1 v

X3

e

L oA CBe L v

o Fons % DI i BB i e B o L s oo
I e D TE N S N TR LA 8 s e AN\ DR

!
.1 MOl At trtes i Py e




g AP P aE

e W I PRI S NPTy N T B

82
J. R. Rowland and W. M. Holmes

The completed package provides the capability for statistical analyses with
realistic engineering trade-offs between accuracy, computational speed,
equipment requirements, and programme complexity for the user. The
importance of such a computer software package for electronic circuit analysie
is evident from its potentinl usage for parallel statistical analysis during
preliminary design. The evolutionary nature of this statistical information
tends to minimize the need for redesign during terminal stages of circuit
development, which was discussed by Dawson ef al. (1966).

A major consideration for the use of the direct covariance package in
circuit design is its inherent computational efficiency. While comparable
accuracy from the Monte Carlo approach requires up to 1000% system integra-
tions, where n is the order of the system or circuit being designed, the direct
covariance algorithm requires n(n +1)/2 such system integrations. If n is
50, for example, the direct covariance algorithm operates approximately 40
times fast than the Monte Cario approach. On the other hand, for very large
circuit arrays of extremely high order, the relative cconomy between the two
statistical analysis tools diminishes. However, as shown in a previous scction,
ertreme cases of circuits involving high noise sources andfor very harsh non-
linearities should be handled by the traditional Monte Carlo method.

6. Conclusions

A direct covariance algorithm has been developed and applied to the
circuit analysis problem for utilization as part of a general computer-aided
statistical analysis and design capability. 'The advantages in both computa-
tional speed and accuracy over the traditional Maute Carlo technique have
been demonstrated for low-noise, mildly non-linear circuits. In addition, a
procedure for accuracy prediction has been developed and applied to a typical
example. 'The incorporation of this direet covariance algorithm into a digital
computer software package has been deseribed with particular emphasis on
its importance to t'ie user as a circuit analysis tool for preliminary statistical
design.

Appendix

This Appendix presents the derivation of the covariance matrix differential
equatinn in eqn. (7) for the linear incremental oquation in eqn. (8). Ths
oxact solution for §x(f) may be expressed i terms of its state transitio:
matrix ®{, 1,) as

Sx(t)= D(t, 1,)8x(t,) + 5 O 7)B(r)dw(r)dr+ ji B, 1)C(r)8adr (21)
A I

Recognizing that da thiough random, is constant in time and using the
definition of [I(t) from eqn. (8), one has

8x(t) =ML, t,)8x(,) + ]" O, »YB(r)w(z) dt + H(i)ba
N
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Therefore,
P(t) = B{bx(t)5x™(t)}

t
=k [(D(l, to)8x(t,) + j D, 7)B(7)8w(7) (I-r+11(l)5u:|
N

x[d)(l, ta)ox(t) + § O(t, 7) B(7)8w(7) dr+1!(t)8a]T (23)
te

Performing the indicated multiplications in eqn. (23) and noting that 5x(t,),
Sw(l) and $a are uncorrelated yields the result

P(t) = D(t, 1) E[5x(t)8xT(t,) JOT(E, ty)
+§ [ O, 1B ESWEWI(p) BN ()T, p) dr dp
v + H(t)B{8abaT}HT(t)  (24)
Using eqn. (2) and the sifting property of the delta function, one obtains
P(t)= (¢, t,) P(t)DT(L, t,)
+ jl d(t, 7)B(7)Q.(r)BYH)DTY, 1) dr
) +H()QHT(t) (26)

Equation (25) provides the integral solution for P(t). However, by forming
P(t) from eqn. (25) and using the relationship

(e, 7)

= =400, 7) (26)

the direct covarinnce algorithm may be expressed in the more convenient
form of the matrix differential equation in eqn. (7).
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A SEQUENTIAL ALGORITHM FOR COVARIANCE MATRIX CALCULATIONS

James R. Rowland
School of Electrical Engineering
and Center for Systems Science
Oklahoma State University
Stiliwater, Oklahoma 74074

ABSTRACT

A useful sequential algorithm is develuped for
handling state covariance matrix calculations in
large-scale stochastic filtering and analysis pro-
blems. A significant reduction in computer stor-
age is obtained by segmenting large-scale systems
and operating sequentially on the various subsys-
tems. This saving in computer storage {s due to
a procedure of dimensioning intermediate integra-
tion variaoles on a lower-order subsystem basis
and re-using them from subsystem to subsystem.
Error considerations and the amount of core reduct-
fon achieved are discussed, and an example s
presented to illustrate the sequential ordering of
the covariance matrix calculations.

1. INTRODUCTION

It is important to be able to perform computa-
tions sequentially for large-scale systems to
avoid excessive digital computer storage require-
ments. For example, such considerations are
especially critical in large-scale air defense
missile system simulations where a varfety of
operations must be handled simultaneously [1.,2].
Some of these systems are so Targe that is {s
simply not possible to implement the desired stoch:
astic filtering or analysis algorithm directly on
a given computing facility. In such cases, an

approximate method must be used.

The sequential algorithm developed in this
paper {s based on the multilevel systems concept
proposed by Mesarovic {31, who partitioned complex
systems into simpler subsystems to form a hierarchy
of system models for analysis and design purposes.
In [4] Lefkowitz described how the mult{level hier-
archy approach had bean used to solve particular
fndustrial problems. Morsover, Noton ES] applied
nultilevel systems theory to derive a coordination
:lgor1thm for a number of subsystem Kalman estima-

ors.

In the present work, the overall system is
segmented into scveral subsystems interconnected
by feedforward ard feedback paths. The analysis
problem considered is the evaluation of the state
covariance matrix at discrete points in time from
its matrix differential equation. Using the sub-
system concert, one may partition the coefficient
matrices, the input covariance matrix, and the
state covarfance matrix to permit simplified
sequential calculations. Differential equatfons
for these partitioned segments are written to re-
flect self-interacting, feedforward, feedback, and
fnput terms. The numerical integration of these
subsystem covariance matrix differential equations
is performed sequentially on the digital computer
with a2 worthwhile savings in computer storage.
Results from a given subsystem calculation become

SWIEEECO Record of Technical Papers, Dallas, Texas, April 19-21, 1972, pp. 135-138.

Willard M. Holmes
Guidance and Control Directorate (AMSMI-RGN)
Research, Development, Engineering and
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a part of the forcing functions for connected sub-
:%stoms considered subsequently. The reasca for

¢ lower required storage is that intermediate
{ntegration vartables are dimensioned on a lower-
order subsystem basis and re-used from subsystem
to subsystem. Moreover, some subsystems have
{nputs from only a few other subsystems, which
further simplifies the sequential computations.
On the other hand, integrating the system covari-
ance matrix differential equation in its originel
form requires much larger dimension statemonts for
the intermediate variables. The reduction in core
storage is a function of the number, order, and
arrangement of subsystems, including the various
interconnections of feedforward and feedback loops.

The cost of obtaining the reduction in core

storage requirements is reflected in the ircreased
complexity involved in the ordering of calculations
for the sequential algorithm. For those applica-
tions whare less computational accuracy is accept-
able, additional savings in computer storage and/
or computational speed can be realized. An example
is presanted to fllustrate the sequential algorithm
itself as well as the interesting tradeoffs
possible in its implementation for large-scale
systems,

2. THE SEQUENTIAL ALGORITHM

Consider a linear, time-varying system described
by the vector differential equation

x = A(t)x + B(t)w M

where x is the n-vector of system states, w is an
L-vector representing white noise inputs, and A(t)
and B(t) are time-varying system matrices. As
shown in [6-12], the stat’ covariance matrix P(t),
defined by P(t) & E(x(t)x'(t)}, setisfias the m-
trix differential equation

Buap s pTAT + nge (2)

whare the functional dependence on time t is im-
plied throughout. The input covariance matrix Q
is defined by the relationship

Elw(t)wl (x)) = Q(t)s(t-1) (3)

Let a large-scale system described by (1) be
segmented into several subsystems as shown in-Fig-
ure 1. In the subsystem context, the matrices A,
B, P, and Q may be partitioned as

Ay wee A By «o By
' . Bel . .
Ay -+ Any Byi o By
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Pry == Py Oy -~ Qy
P = Q= ° .
Par oo Py B - G/ ()
l“’u lwu. l\ll,,,,
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N,2
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N, I

Figure 1. Schematic Diagram of a Large-Scale
System Showing Individual Subsystem Connections.

To simplify the development which follows, it
15 assumed that noise inputs are uncorrelated with
each other and, tTurthermore, that each enters only
a single designated subsystem as shown in Figure 1.
This assumption means that both B and Q are
diagonal matrices. T

Since the matrix ¢ is symmetric, i.e. P =P,
one has P.j = P}i' Therefore, (2) may be express~

ed as
Pis = RinPag Y APy b - Al
L M T .1
* PRt Paihia b e PRy
T
* 84044854, ()

where 8;; is 2ero if i # J and unity if i = j.
Equation” (5) may be conveniently grouped as

) 3|
Pis © ; AiPes * A4iPij

AR

N
S T ,T T .7
2, Mgt Z Ptk * P3ihys
k=i+] k=

N
T,T T

2 Prifie * BiiQiiBiidy; (6)

k=3+1

+

+

for i = 1,...Nand j = 1,...,N.

The mat-ices PE, and P}i in the second line of (6)
may be replaced by Pik and Pyj, respectively,
since P is syrmetric. The second and fifth terms
in (6) are the only ones involving Pij. Moreover,
the first and fourth terms have as coefficient
matrices entries from the lower left of the main
diagonal of the system matrix A. These terms re-
rresent feedforward paths. Elements from the
uoper right of the main diagonal of A appear in
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the third and sixth terms in (6). These represent
feedback paths, The seventh, or last, term repre-
sents input noise data. Rewriting (6) and sumra-
rizing these observations, one has

5 T
Pij = Aiipij + P1j“jj
w

Self-Iinteraction

i-1 -1
T
¥ APy * ; Pk
k=1 :

(7)

Feed-Forward Paths

R N
T
Z AiPry * z Ptk
kej+]
I

+
k=14
k J

Feelback Paths

T
* ByiQyByidy;
\"_V—'_/
Noisy Inputs

What is desired is to apply (7) sequentially to
determine Pi{ for all 1 and all j. 1t is partic-
ularly important only to know P44, but it nay be
shown that calculation for all 1 and j is neces-
sary to completely determine Pyj.

A flow chart showing details of the sequential
algorithm for covariance matrix calculations is
given in Figure 2. Numerical results obtained by
using a computer software package developed from
Figure 2 are provided in a later section of this

paper,

Initialization

Identify Coefficients and
Inputs for the (I,J)

Sybsystem Calculation |

Subsystem Covariance
Integration and Storage

Advance Time

all

Figure 2. A Flow Chart of the
Sequential Algorithm,
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3. ERROR CONSIDERATIONS

The use of sequential calculations makes avail-
able current values of subsystem covariance ma-
trices only for feedforward terms in su’ equent
equations. Previous values musi be used 1S approx-
imagions in feedback terms, which is equivalent to
having samplers and zero-order hold devices in
certain feedback loops in covariance matrix calcu-
lations.

To illustrate the nature of these approximations
consider the system of Figure 3, which has a single
feedback loop around N cascaded subsystems. Many
of the elements of the A matrix are zero for this
given system structure. In fact, except for the
elepent Ajy, which is due to the single feedback
loop, only the main diagonal elements and those
immediately below and adjacent to the main diagonal
are non-zero. Figure 4 shows a block diagram for
the state covariance matrix elements and indicates
that the single feedback loop in Figure 3 iniro-
duces a feedback loop for every row of the covari-
ance mairix. Let N=5 for a particular system.

vy +

SS#1 | Ss#2f—=rc — sy

Figure 3. A Simple Feedback System.
6,
B

Pa l P

™

¥ "
el el

Interrelationships for Elements of
the Partitioned State Covariance Matrix
for the System of Figure 3.

o

Figure 4.
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ror the jth row, the previous value of Pjy is need-
ed. For example, to calculate Pg4q One may write’

- T T
Pag = AaaPas * Paggs * AasP3q * P3qhe
T
+ ByaQyqBay
3 = T T
P3g = A33Pag + Paghaq * AgpPag ¥ Pasfys
- T T
Pas = AaaPaq * Paghaa + ApiPrg + Pashy
- 7 T
Pra = A1iPrg * Prage * Przfas * ArgPas  (8)
In interpreting (8), one should note that the four
matrix equations must be applied sequentially in
reverse order, beginning with the last. The
matrices Py3, P23, and P33 are known from calcula-
tions for the previgus subsystem, i.e. subsystem
#3. Obsarve that the last equation in (8) has the
term AygP45, which is obtained from computations
at the previous time interval and used as an approx-
imation for the current interval.
This section has shown the kind of approximation
needed for applying the sequential algorithm. The

next section describes the reduction in computer
storage for the algorithm.

4, REDUCTION IN COMPUTER STORAGE

There is a certain amount ot diyital computer
core required for simply storing the matrices A, B,
Q, and P, With some important exceptions, these
matrices are needed reyardless of the method bein
used to solve the matrix differential equation (2?.
0f major concern here is the comparison of addi-
tional dimensioned core locations required by the
sequential algor{thm and by the direct evaluation
o{ (2) using standard numerical integration form-
ulas.

Consider the case of m cascaded subsystems with
each of order r, Euler's Method would require
(mr)2 additional locations, i.e. for the P matrix,
by direct evaluation. However, only 2mé + 2 r
additional locations are needed for the sequential
algorithm. If m is large and also much greater
than r, then the savings in core can be significant.
Moreover, the additional core for RK2, i.e. the
stand%rd second-order Runge-Kutta fgrmula, is
3(mr)2 by direct evaluation and 2 m¢ + 4 r2 by the
sequential algorithm. Corresponging co;e require-
ments for RK4 are 3(mr)Z and 3 m¢ + 4 ré, respect-
ively. Figure 5 shows plots of p versus m, where
p is the ratio of additional core required by
direct evaluation to the additional core required
by the sequential algorithm. These curves should
be viewed as rough estimates, rather than exict
ratios, since use of symmetry conditions and other
more efficient programming techniques would alter
these curves somewhat. It should be pointed out
that if a large amount of corz is required for the
system matrices and for program operations, then a
dramatic per cent reduction in the additional core
required by the sequenti2} algorithm may be de-
emphasized when considered on the basis of total
core requirements.
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Figure 5. Ratio (p) of Additional Core Needed by
Direct Evaluat1on to Sequential Algorithm
Versus Number (m) of Subsystems.

5. AN EXAMPLE

The sequential algorithm was compared with the
direct evaluation method on an open-loop system
consisting of several cascaded first-order subsys-
tems. The direct method used RK2 for numerical
integration, and the scquential algorithm used RK4.
It was verified first that the two methods gave
essentially identical numerical results for ten
subsystems. Moreover, these results agreed with
100 Monte Carlo simulation runs performed on the
same tenth-order system. The procedure for compar-
ing total core requirements was to increase the
rumber of subsystems considered by each method
until a preset level of 100K bytes of core was
exceeded, It was found that the direct evaluation
method could handle only about 45 cascaded subsys-
tems, However, the sequential algorithm could be
used for as many as 130 subsystems.

6. CONCLUSIONS

A sequential algorithm has been developed for
reducing digital computer core requirements in co-
variance matrix calculations. The associuted com-
putations are performed on a subsystem basis, and
integration variables are re-used from subsystem to
subsystem. A particular example has demonstrated
that a significant savings in core requirements
can be realized by the new algorithm.
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OPTIMAL DIGITAL SIMULATIONS FOR RANDOM
LINEAR SYSTEMS WITH
INTEGRATION CONSTRAINTS

James R. RowrLanp

School of Electrical Engincering and Center for Systems Science.,
Oklahoma State University, Stillwater, Oklahoma 74074, U.S.A.

(Receited 20 Notember 1972)

Abstract—A generalized approach involving concepts from optimization theory is developed for
realizing optimal digital simulations for linear, time-varying, continuous dynamical systems having
random inputs by modifying discrete input signal variances. The minimization of a cost functional
kased on the state covariance matrices of the continuous system and its discrete model leads to a
wwo-point boundary value problem which can be solved by known numerical techniques. The
resuft is a systematic procedure for determining optimal digital simufations under the constraints
that the numerical integration formula and integration step size have been specified in advance,
An example is presented to illustrate the procedure, including a verification using Monte Carlo

simulation runs.

INTRODUCTION

Increased digital and hybrid computer capabilities in recent years have resulted in an
even stronger reliance on the Monte Carlo approach for statistical analyses of large-scale
dynamical systems{1, 2]. Improved digital random number generators(3, 4] have already
been developed for producing more precise statistical inputs. Emphasis has also been
placed on developing more accurate[5], as well as more efficient{6, 7], numerical algorithms
for digitally integrating large systems of continuous differential equations. Moreover, the
rapidly expanding ficld of digital signal processing has only recently opened up several
new possibilities for handling continuous systems efficiently via digital representations
{8-10]. Many of the previous works, e.g. [8] and {11}, are based on matching the frequency
spectra of continuous systems and discretized models. Although more extensive time-
domain techniques have been reported in the literature[12]. only the simple rectangular,
or Euler, approximation is in common use for discretizing continuous systems{13-16].

This paper utilizes concepts from optimization theory to derive a time-domain solution
to the problem of determining optimal digital representations for random linear con-
tinuous systems having integration constraints. The stochastic formulation reduces to a
deterministic two-point boundary value problem in the calculus of variations, which can
be solved by known techniques. Such integration constraints can occur, for example,
when farge-scale systems are being simulated on medium-sized hybrid facilities{17]. If the
analog equipment is seriously limited, then a few of the integrations must be performed
digitally. In these cases, the integration method and corresponding step size are often
constrained quite severely. The purpose of this paper is to present a systematic procedure
for modifying the digital simulation input signals to yield optimal results.
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PROBLEM FORMULATION
Consider a continuous, linecar, time-varying system described by
x(t) = A(O)x(r) + Bloyw(e) (1)
where X(r) is an n-vector representing the systemn state, w,(f) is an m-vector of white noise

input disturbances, and A{r) and B{r) arc n by n and n by m system matrices, respectively.
The white noise inpui w(r) has a mean of zero and a covariance matrix Q1) defined by

Elw (0wl (1)} = Q)51 ~ 1) (2)

where d,-) is the Dirac delta function. Let a discrete model of the continuous system (1)
have the form

¥lteeq) = Odltg s o5 1Y) + Hltgs 1, 1IWAL) 3)

where ¥(1,) s an n-vector representing the model state at time ¢, = kT, w{t,) is an m-vector

mput sequence of random numbers, and ¥, and H are nby n and n by m time-varying model

matrices, respectively. The zero-mean model input. wir,) has a covariance matrix Qt,)
given by

24) fork=j
Etwtwi(t)} = { 0 ‘ for k # J. @)
The cost functional is
k-1

J{Q4(1)] = Trace kZo HPAts ) — Pt 1)]TR[P<('h 1) = Ptesy)) 5)

where R is some positive semidefinite n by n matrix and P(t) and Pyt,) are defined by
' PA1) & E{x(xT(0)} (6)
Pt & E{."('A)YT(Q)}- Y]

The problem is to determine Q1,) such that the cost functional J in (5) is minimized for
specified model matrices &, and H, in (3) corresponding to a given numerical integration
formula and integration step size 7.

DEVELOPMENT OF OPTIMAL DIGITAL SIMULATIONS

The approach to be utilized here is to determine the matrix differsnce equation for
Pyt ) in terms of Pyt,) and the input covariance matrix Q,t,). Thereafter, the cost
functional in (§) may be minimized with respect to Q1) by invoking known results from

optimization theory.
Using the model difference equation (3) in the definition (7) yields

Pftysy) = E{y(lkn)}’,‘('kn)}
= E{[®(t) + Hwa(t))[®ay(t) + Hawy(e))}
Pitis1) = Oty sy, PAIOT (s 10 1) + Hyltrw 1 QAIHT (s 44 1) ®

Therefore, the optimal digital simulation problem originally stated has been reduced to a
two-point boundary value problem in the calculus of variations. It is required to minimize
the cost functional (5) subject to the matrix difference equation constraint given by (8).
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Optimal digital ssmulations for random linecas systems 1n3

Before proceeding with this optimization solution, it is instructive for comparison
purposes to determine the corresponding difference equation for P(1y , ;). The exact ex-
pression for P,(1) may be obtained. as shown in [13]. by solving for x(t) from (1) and sub-
stituting the result into the defining equation (6), i.c.

Pty = Eix(nx"(n)

= E{[d),(t. 1)x(to) + f o, t)B(t)w‘(z)dt]

] r
. [‘D‘(l, 16)x(10) +I XA I)B(l)\\"(t)dt] } 9)

Performing the indicated multiplications in (9) and noting that x(to) and w(r) are un-
correlated, one has

P1) = @1, to) E{x(to)x (1)} 07 (1, 1)
+ f O (1, )B)E{w (1w (p)} BT(p)T(1, p)drdp. (10)

Using (2) and the sifting property of the delta function gives, for t = 1,,; and 15 = f;, the
recursive relationship
Pt o) = ®ltisy, PO (04 1, 1)

[ Oftas s DBOOOBTROT 1y 1. 1), (a1

Ik

The matrix cquation in (11) is not a constraint equation for the posed optimizatic + prob-
lem because Pr, , ) is not a function of the optimization variables contained in the matrix
04(1:). On the contrary, P1; , ) is simply treated in (5) as some known time-varying matrix

which is to be modeled by Py(t; ;).
It is known from the calculus of variations in optimization theory that the solution to

the posed problem requires the introduction of an n by n matrix 4,(1,) of Lagrange multi-
pliers for Py(t,). Morcover, Aft,) satisfics a matrix adjoint difference equation which has

the boundary condition
2t} =0 (12)

where tj is that terminal time indicated in (5). A convenient method for obtaining the
adjoint equation is to define the Hamiltonian 1 as

H = Trace{3{Ptx+1) — Pltes )ITR(PAti41) = Pati s )] + Paltis )A(ie )} (13)

It has been shown([13] that the matrix adjoint equation is

. OH
/.d(h\) = m' “4)

Equation (8) must be substituted into (13) before the indicated partial differentiation in
(14} is performed. Finally, the optimal value of Q,(#;) satisfies

o (15)

Py
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The resulting two-point boundary problem for determining the optimal digital simulation
involves solving simultancously the equations in (8), (14) and (15) with the boundary con-
ditions in (12) for A,(1,) and known initial conditions for Pyt,), i.e. Pi(to) = Fyo.

It should be observed that a cegenerate case of the optimization problem occurs when
the number (m) of random inputs is at least as large as the number (n) of systern states,
i.c.m = n. Insuch a case, the cost_{unctional in (5) becomes zero. If, in addition, the model
is permitted to utilize the state transition matrix (STM) method of integration{7), then

Q4t,) becomes Q(6,)/T, as shown in Ref. 18.

OPTIMAL NUMERICAL RESULTS
As a particular example for purposes of numerical comparisons, consider the second-
order system given by
%y = Xy
X3 = —=2x; — 3x; + w(t) (16)
where x,(0) = x,(0) = 0 and w(t) is a zero-mean white noise process with @, = 1. Let the
discrete model matrices Oty 1, &) and H (1,4, 1) in (3) be considered for two separate
cases corresponding to the use of the Euler and second-order Runge-Kutta (RK2j inte-
gration formulas on (16). Since (16) is a lincar time-invariant system, ®, and H,are functions
only of the integration step size T, where T = t,4, ~ t;. For Euler's formula, these

matrices are

O4T) = (¢u(7} 4’;2(”) - ( 1 T )
625(T)  ¢25(T) ~2T 1~13T an
i) = )
H(T) = =
47) (h,m T
and for the RK2 formula
-T2 T - 15T
O T) =
A7) (—2T+ T2 1 -3T+ 3-ST’)
(18)
HAT _( 0-5T?
AD=\r_ s
Let the cost functional J in (5) be defined by
l K-1
J= 3 kZO {[Perrltusy) — Pariltes DI + [Pezaltis) ~ Pazalty + 1)1} (19)

where K is selected in various parts of this problem such that the product KT is approx-

imately S sec.
The component equations for P, corresponding to (8) are

Para(tie 1) = F1Pa(6) + 20110 12Pan2(t) + $F2pa22(t) + H1Qu(t1)
Para(tes1) = G11@21Pan1 () + (11922 + P12020)Paralti)

+ G12@22Pa22(0) + hiha Q1) ‘ (20)
Pazaltirs) = 631Par () + 202,022Pa12(0) + $32Pa2a(t) + h3Q{1)
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with each having zero initial conditions, The Hamiltonian in (13) is
H = (Y + 4(22)® + (8% 1panslte) + 26116120012(00)
+ $12Paatte) + QAW Aars(ty s 1) + [D119210013() + (11022 + $12021)Pasa(t)
+ $12022Pa22(1) + BihaQAtiaraltis 1) + [931Pa11(ts) + 2621922Pa12(ts)
+ $12Pa2alty) + h3QAWAs2a(ts) . 1)
where Yy, and Y,, are defined as
Vit = Peasltiss) — 63 1Par1(ts) = 2611012Pa12(0) ~ SF2Paalte) — H1QAH) 2)
Va2 = pasltias) = $31a11(1) = 2020922Pa12(t) — $32P422(ts) — 30 A1)
Moreover, the component equations for the adjoint matrix A, in (14) are

. oH
b)) = ——— = — ¢}, [¥11] —.¢3:1(122) + 11 4a11(tes1)
0paslty)

+ Gr12@214a12(tks 1) + O314022(0k41)

Aaalty) = "’a"l"“‘ = =2¢11012(Y11) — 2¢21022[Y22) + 20110124411(0a+1)
0para(ts) . @)
) T (11922 + €12021)Aa13(te+ 1) + 20218234422(0841)
. oH )
4422t = Tl = —¢3,[¥yy) — 93 Yaa) + éF24a11(tks )

+ ¢12022003(0+ 1) + P32haaltas )

The standard formulation for the two-point boundary value problem requires the in-
version of the three equations in (23) to yield A(t,+,) in terms of A4t,) and P{,). Using
{15) then gives Q,(t,) as a function of Afty,,) and Pr,), which can further be written in
terms of P, and 4, at time 1,, However, the split boundary conditions at ¢, and tx makes
an approximate itcrative solution, such as the gradient technique, highly desirable.

One version of the gradient technique[13] utilizes the equations in (20) and (23) directly
without inverting (23) or solving (15) for Q1)) Letting Q4t,) = Q./T for the first iteration,
the P, component equations in (20) were solved forward in time. Thereafter, (23) was
solved backwards in time using the boundary conditions in (12). The value of Q1,) for the
next iteration was obtuined by adding to the previous value the term ~a«[0H/2Q A1),
which had been evaluated for the P, and A, of the last iteration. For this example, a pro-
vortionulity constant a of 200 to 500 resulted in the convergence of this repetitive process
in ten wcrations or less for most of the cases considercd, The average optimal values of
Q, obtained by this gradient procedure are presented in Table 1, since the optimal Q1)

Table 1. Optimul discrete mode! input variances Q, for several cases

Numerical Step size Number of steps Average optimal
integration formula (T) (K) Q41
Euler 01 50 81
Euler 02 25 33
RK2 02 25 56
RK2 03 17 43

R Ly
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for these cases were within 10 per cent of these averages for all 1; . Observe that the optimal
2, for these constrained discrete model cases varied considerably from the unconstrained
model solutions (@, = Q,/T). For example. the average optimal @, for Euler’s method
with T = 0-1 was &1, while O, for the unconstrained problem was 10. Figure 1 shows the
cost futictional J for the tabulated cases as a function of ;. These curves verify the expected
result that a larger J is obtained when the discrete model utilizes a less accurate integration
formula and a larger step size.

Variances for both x, and x, are plotted as functions of time in Fig. 2 for Euler’s method
with T = 0.1, Nonoptimal solutions obtained by arbitrarily selecting Q, = Q/T = 10
show good agreement between pyyy and p.yy but extremely poor results for representing
Pe22 BY ps22. On the other hand, corresponding curves obtained by using the optimal

0 005~

X
[ 1]

X .
AK2,T+03/ Euter, T+0-2

0-003}- X/
J X

, | / Euler, 750 LX

0:002 / ) /
X

0 001 {- /

/X
"——X
Z—*"RK2, T:0-2
__/{ 1 { 1
4] | 2 3 4 5
Time, sec

Fig. 1. Plots of J vs time,
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P
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Py 018
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Fig. 2. A comparison of optimal and nonoptimal solutions for Euler's method with 7 = 0.1,
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i values of @ (t;) distribute the error more evenly between the two main diagonal components

! of P,, which is necessary to minimize the cost functional in (19). Monte Carlo simulation

! runs were ensémble-averaged on the digital computer to verify these optimization results. ;
2 | Figure 3 shows that 100 Monte Carlo runs were insufficient for both the constrained ;
: f discrete model using Euler's method with T = 0-1 and the unconstrained problem using ’

| & more accurate integration formula and smaller step size. For this example, Monte Carlo

i runs for the unconstruined problem utilized RK2 with 7 = 005, which yielded a negligibly

% small cost functional (J & 0) in the gradient optimization procedure, Following the

f guidelines specified in Refs. 19 and 20, it was found that 1000 Monte Carlo runs gave
results which agreed quite well with the variances determined in Fig. 2, 7

rg 8t

o,

shad oy

E EXTENSIONS

£ The optimal digital simulation fechniques developed in this paper for specified @, and
A, caneasily be extended to permit th.se discrete model matrices to have free optimization
! parameters. The resulting formulation would require the optimal selection of both the
: . discrete input covariance matrix Q,{t,) and certain discrete model parameters in @, and
H,. This additional flexibility in the optimization procedure would result in a reduction
in the cost functional by an amount depending upon precisely how these mode! parameters

R

T\l

v 24

3 i affect the dynamical system response. A special case of this formulation has been con. ]

E T sidered in 18], 4

: i The extension of these optimization results to mildly nonlinear systems can be achieved K

. | by utilizing linearized variational equations about a nominal solution, As shown ia [20), e

3 ! the application of the error propagation algorithm in equation (11) for an approximate .

) analysis of low-noise, mildly nonlinear systems has yielded acceptable results, Further 3

i digital simulation improvements might be realized by simultaneously optimizing the ¢ é

nominal dolution and the discrete linearized variational model(21). Finally, it appears that ;B

i the concepts developed here for optimal digital simulations might also be extended for } 1

3 ; Exoct solution (p,, ) : 2

1 1000 rume, RKE,T+008 b

2 | oo8 r' 100 runt, RKE, T¢008 {7

y : LI}
.f ; oosf- Y

: ' 74;: 3

: 3 ; oorp~ -* 3

3 : . Y

5 . | 1on oy

; P e, 4

! X pHmel constroined p, N

; S oosk for Euler, Ye0:| i

s gtk R

.g 004 - ‘;
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003}~ i

002 ;
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3 ‘ Fig. 3. Monte Carlo simulation results, i
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the optimal discrete implementation of stochastic filtering algorithms in continuous
dynamical systems[22].

CONCLUSIONS

Known optimization techniques have besn applied to obtain optimal digital simu-
latiuns for random linear systems having integration constraints. The developed pro-
cedure depends upon optimally selecting the input covariance matrix Qt,) for prespecified
discrete model matrices corresponding to fixed numerical integration formulas with a
given step size. An example including Monte Carlo simulation runs has been presented to
demonstrate the improvements over arbitrary nonoptimal solutions.
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Abstract

Direct methods for handling noise propagation problems in large-
scale nonlinear systems are examined from the viewpoint of computability
and efficiency. Comparisons are made between a fixed configuration
method, the covariance analysis describing function technique, and the
variational covariance algorithm. Initially, the different techniques
are described with a particular emphasis on their advantages and dis-
advantages for large-scale nonlinear systems. Thereafter, a combination
of the techniques is applied to a thirty-third order air defense missile
system. The Monte Carlo simulation technique is then used to establish
the validity of the numerical results for the combined direct algorithm.

Introduction

Early work on noise propagation in dynamical systems focused on
the use of the Monte Carlo technique in which large numbers of simulation
runs were ensemble-averaged to obtain statistical results. Since these
Monte Carlo runs were often performed on the digital computer because
of accuracy considerations, the basic probiems were (1) the digital
generation of a sequence of pseudo-random numbers to serve as a random
input to the given system, (2) the sampling problem inherent in represen-
ting continuous systems and signals digitally, and (3) the determination

of the number of simulation runs needed for acceptable statistical accuracy.

Chambers [1] developed mixed congruential and multiplicative recurrence
formulas for generating pseudo-random numbers on the digital computer,
The optimal discrete representation of continuous input signals has
been considered in [2]. It 3. shown in [3] and [4] that at least 1,000
simulation runs are required for statistical accuracies on the order of
two per cent in certain applications. A more modern approach to the
noise propagation problem is based on computing the desired statistical
information directly. The new approach has resulted in several direct
algorithms which are particularly amenable to digital computation based

on accuracy, computational speed, computer storage, and algorithm complexity.

This paper presents a state-of-the-art survey of direct noise propaga-

Proceedings of the Seventeenth Midwest Symposium on Circuit Theory,
Lawrence, Kansas, May 23-24, 1974.
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tion techniques for large-scale nonlinear systems. Comparisons are made
between a fixed configuration method, the covariance analysis describing
function algorithm, and the variational covariance algorithm. After
examining the relative merits of the three direct methods, a combined
algorithm is applied to provide useful results for a thirty-third

order system,

System Description

Consider a nonlinear dynamical system described by
x = f(x, u(t), w(t), 8, t) (1)
where x is the n-dimensional state vector, u(t) is an r-vector of non-

random inputs, w(t) is an m-vector of random processes, g is an £-vector
of random bias inputs, and t is iiie independent variable representing

time.

The input noise vectors w(t) and B have mean values specified by
n, and g and covariances matrices Qw(t) and QB’ respectively. These

may be defined mathematically as
Ew(t); 9, (t)
{8} £ nglt)
= A
E {(w(t) - n,(£)(u(r) - n (1)1} = Qt) 8(t-1)
W W W

where 6(°) represents the impulse function.

(2)

e

The problem is to utilize direct noise propagation techniques to
obtain statistical information about the system state.

The Fixed Configuration Method

The fixed configuration method developed by Zirkle and Clark {5]

is an extension of deterministic variational methods to stochastic systems.

Described as a variational-averaging technique, this method requires
that an initial assumed solution be an explicit function of time with
parameters being random variables. The selection should be made such
that statistical properties of the assumed solution are approximately
the same as the statistical properties of the system response.

Zirkle and Clark assumed a solution of the form
R(t) = R(R,t) (3)

where R is a j by k matrix of random variables used in approximating
the system response. Their criterion for selecting R was
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for j=1, ..., nand k = 1, ..., m, where t) and t, indicate the specific
time interval of interest. As an example, Zirkle and Clark considered

X+ W x +ex = F(t) with an assumed form in (3) of &(t) = R cos wt.
The iﬂput F(t) was a zero-mean, unity-variance, Gaussian, periodically
stationary random process. Equation (4) became

(i+1§T 3
wt - F(t)]6R coswt dt = 0

(5)

[(m2 - 2)R cos wt + eR3 cos
iT 0

vwhere T = 2nr/w. The resulting algebraic equation was

-% eRS + (mﬁ - wz) R=¢C (6)

where C is the average of F(t) cos wt over the period of interest T.
Therefore, the probability density function of C and the nonlinear trans-
formation in (6) could be used to determine the probability density function
of R and, hence, the desired result in (3). Zirkle and Clark reported

an error of less than 2% in the mean-squared value of the response am-
plitude for Wy = 1, w= 0.6, and € = 1/16.

The main disadvantage is the problem of choosing the form of the
assumed solution, which may be overcome for a particular application
by a preliminary knowledge of the physical system behavior [6]. More-
over,it is quite difficult to implement this algorithm for large-scale
systems on the digital computer. The primary advantage is that the
complete state probability density function is available from the procedure.

The Describing Function Method

Another direct method for noise prepagation is the covariance analysis
describing funciion technique, which utilizes a statistical linearization
of a given nonlinearity subject to pre-specified (usually Gaussian) input
waveforms [7,8]. The result yields a quasilinear approximation of the
transfer function of the nonlinearity, which is then used in the well-
known covariance propagation equation for linear systems,

The differential equations for the mean zN(t) and covariance matrix
of P(t) of the quasilinear system state are

Xy = N, (xoP) %y t 0y,
. : (7)

P=AP +PA" + Qw
where NZN(ZN’P) and A are matrix describing functions for the mean and

rendom signals. These matrices are defined as

No (xy,P) %y = E{f(x,t)}
y, B0P) % = ELELY) N
A = E{(f(x,t) 6x' } P!




99

where it has been assumed that the state x is the sum of its deterministic
mean x, and a random part 6x. The formulation in (7) treats the system

L

x = f(x,t) + w(t) (9)
rather than the more general system in (1).

The advantage is that nonlinear effects are utilized in a linearized
framework for a fast and efficient calculation of the covariance matrix
associated with the system variables. The main disadvantage is that
large-signal linearization techniques are applied to average statistical
information about the nonlinearity. The describing function utilizes
the nonlinear elements directly to yield noise propagation results, whereas
the fixed configuration mathod requires an assumed form of the system
response over a given time period. A third approach based on linearized
incremental variations about nominal operating conditions is examined
in the following section.

Variational Covariance Algorithm

The third method to be considered is the variational covariance
algorithm which uses sufficiently small variations about the noise-free
solution. The coefficients of the linearization matrices are updated
during each integration interval whien applied to large-scale nonlinear
systems. This technique was applied by Kuhnel and Sage [9] for sensitivity
equations about a nominal flight path due to trajectory initial condition
dispersions and random system variations. The direct and adjoint methods
were used by Irwin and Hung [10] for evaluating the state covariance
algorithm for large-scale, nonlinear dynamical systems.

It is assumed that the input noise disturbances cause sufficiently
small deviations &x(t) about the (noise-free) nominal solution gﬂ(t)
to permit linearization. Expanding (1) in a Taylor series about
§N(t) and neglecting higher-order terms above the first yields

8x(t) = A(t)sx(t) + B(+)su(t) + C(t)sB (10)

where Sw and 68 are deviations from their respective means, and A(t),

B(t), and C(t) are defined as the first partial derivatives of f(-)

with respect to x, w, and 8 , respectively, These derivatives are evaluated
at the nominal conditions Tn each case. The resulting variational
covariance algorithm is given by

P(t) = ACEIP(t) + P(t)AT(t) + B(t), (t)BT(¢)

n
+ o) gT(t) + He)g () S

where P(t) is the state covariance matrix and H(t) is the integral of
the weighting pattern associated with C(t).

Rowland and Holmes [4] showed that the variational covariance algorithm
can be applied to mildly nonlinear systems with acceptable results by
using linearized incremental equations about the noise-free solution. This
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basic algorithm tends to yield unsatisfactory results for highly non-
linear systems, but the technique may be combined with the other methods
described in this paper for acceptable results.

A Combined Direct Algorithm

The variational covariance algorithm has been combined with the
describing function approach to yield improved roise propagation results
for large-sciale systems. Such a technique is useful for handling state-
dependent switching nonlinearities. The input density function to the
nonlinearity is assumed to be Gaussian, and the output density is determined
by known nonlinear transformation methods. The variance of the output
signal may then be calculated directly from the resulting non-Gaussian
density function.

A thirty-third order six degree-of-freedom air defense missile system
has been investigated [11]. The system includes a fifteenth-order auto-
pilot, twelfth-order airframe equations with missile rotational and trans-
lational variables and launcher dynamics, fourth-order actuators, and
a second-order seeker. Only certain segments of the missile flight could
be handled by the combined algorithm because of severe nonlinearities.
During this part of the flight, two relay noniinearities in the seeker
prohibited the variational covariance algorithm from giving acceptable
results. However, the combined direct algorithm yielded results which
compared favorably with twenty-five Monte Carlo ensemble-averaged runs.
The seeker relay nonlinearity outputs were discrete levels, and the output
variance was easily computed for the given operating conditions along
the flight path. Finally, it should be noted that the combined direct
algorithm gave unacceptabie results for certainfparts of the flight because
the severe nonlinearitiesoccurring in several of the missile sybsystems
were not processed by using the describing function concepts.

Conclusions

Three direct noise propagation techniques have been examined, and a
combined direct algorithm has been developed for large-scale applications.
The fixed configuration method was shown to be difficult to implement for
large-scale systems because of the requirement of an assumed form of
the solution. The describing function method employed a statistical
linearization of system nonlinearities with Gaussian input waveforms. Its
application to large-scale systems requires a catalog of describing functions
for the particular nonlinearities present in a given system. The varia-
tional covariance algorithm utilizes linearized variatiuns about nominal
operating conditions to yield acceptable results for mildly nonlinear
systems. Moreover, the variational algorithm is easily extendable for
stochastic filtering applications where the system state is to be estimated
from a noise-corrupted measurement.

The combined direct algorithm was applied to a thirty-third order air
defense missile system. Certain harsh nonlinearities were handled by
the describing function approach and the other milder nonlinearities
by the small-signal, incremental linearization approach, These numerical
results compared favorably with the Monte Carlo simulation results
obtained for the same large-scale system,
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f Abstract
j

A direct stochastic sensitivity analysis algorithm is developed for
| linear dynamical systems having incompletely known input statistics. The

new algorithm extends previous results by applying covariance propagation

concepts which utilize as a forcing function the sensitivity covariance

; matrix associated with the uncertainty in the elements of the system

! input covariance matrix itself. The developed algorithm is evaluated in

{ the context of a ceneralized sensitivity analysis formulation involving

| nonlinear transformations on the input signals. Numerical results are
provided to demons*rate the usefulness of the new algorithm.

INTRODUCTION

Noise disturbances are inherent in all large-scale dyramical systems,

T e s et

typically appearing as a portion of the input signal, measurements, and/or
variations in system parameters. Analysis of noise disturbance effects

on the system has been accomplished primarily by representing the noise

s e~ s g

, as a random process in systems modeled as being continuous or as a random
! sequence in discretely modeled systems [1,2]. Interest in the propagation
of a random process through a large-scale dynamical system has centered

on quantizing its effect on performance and ultimately on determining
methods by which the effect can be reduced. The traditional approach

on noise propagation problems has focused on the use of Monte Carlo
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State University and the U. S. Army Missile Command.
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techniques in which a large number of computer simulation runs are en-
semble-averaged to obtain statistical results [3,4]. A more modern
approach computes the effects of noise by solving the differential equation
defining the state covariance matrix in terms of system parameters and

the ccvariance of the input noise. Though well known and widely dis-
cussed as a technique for linear, time-varying systems [5-7], the method
nas also been applied to mildly nonlinear systems by use of appropriate
linearization schemes. In particular, Irwin and Hung [8], Kuhnel and

Sage [9], and Rowland and Holmes [10,11] have presented results for
aerospace and electronic systems applications.

The covariance analysis method can be characterized by its require-
ment for a description of input noise statistics. However, in many cases
those statistics are not well defined or, at best, they may be known
only to within some tolerance level of uncertainty. The question arises
regarding the usefulness of the covariance analysis method when a complete
probabilistic description of the input process is nct available. To
this end sensitivity analysis, developed primarily for studies of filter-
ing techniques [12,13], is needed to provide a useful method for deteymining
the effects of errors in modeling input signal covariance matrices.

In this paper a new algorithm for sensitivity analysis is developed
for linear dynamical systems where input statistics are not well known.
The direct covariance propagation concept for linear systems with specified
stochastic inputs is extended by considering variations in input noise
statistics. Error analysis techniques based on specified input covariance
matrices are reviewed initially for background information. A direct
stochastic sensitivity analysis algorithm is then developed by expressing

these covariance matrix equations in vector form and applying error
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propagation concepts to the resulting vector equation. A generalized

sensitivity analysis formulation is presented to establish the validity

of the new sensitivity algorithm. Brief examplas are considered through-

out the paper, but more complete numerical results are reserved for a

separate section following the algorithm development.

PRELIMINARY ERROR ANALYSIS CONSIDERATIONS
As a basis for the main results to be developed later, consider the
linear, time-varying, dynamical system represented by the vector

differential equation
%(t) = A(t) x (t) + B(t) w(t) (1)

where x is an n-dimensional plant state vector, w is an m-dimensional
disturbance vector, and A and B are n by n and n by m system matrices,
respectively. Let w(t) be a vector of white noise processes with mean

ﬁw(t), and let the covariance matrix associated with w(t) be defined by

E(Tw(t) - 1, ()] [u(r) - u (1"} = g (1) 8(t=1)  (2)

where §(+) is the Dirac delta function.

Let P(t) represent the state covariance matrix, i.e.

P(t) % E(x(t) - u (£)] [x(t) - ()11} (3)

where ux(t), the mean of x(t), may be determined from (1) by replacing
w(t) by uw(t) and x(t) by ux(t). It has been shown that P(t) satisfies

the matrix differential equation [1,2,5,7] given by

ST > Ao
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P(t) = A(t) P(t) + P(t) A'(t) + B(t) Q,(t) B'(t) (4)

This result {s sometimes referred to as the direct covariance algorithm
[11].*
Suppose Qw(t) in (2) and (4) is not known exactly but lies somewhere

on the bounded range between Qw (t) and Q!Z(t). The correspondira values
=1

of P(t) from (4) may be calculated to yield P](t) and Pz(t). Sucn an
ervor analysis based on deterministic variations from some nominal con-
ditions, such as Qw(t) = Q, (t) and P(t) = PN(t), may be simplitied

= N

when bounded variations GQw(t) occur above and below Q, (t), i.e.
L] LY
(QEN - GQﬂ) f_Q-_f,(Q!N + GQ!B- ' (5)

The resulting differential equation for &P(t) 1is given by

"8P(t) = A(t)P(t) + SP(L)AT(t) + B(t)GQw(t)BT(t) (6)

Therefore, P(t) varies between P](t) = PN(t) - &P(t) and Pz(t) =
FN(t) + &P{t) for the variations of Q, specified in (5),

Example 1
Suppose a steam-driven piston is used to impart a starting velocity

condition to aircraft on a carrier deck. The steam pressure after each

firing varies randomly on the piston. By neglecting the aircraft dynamics,

*It should be observed that the covariance results of this paper are
applicable to linear systems and, hence, are not dependent upon the mean
value of w(t). However, extensions are possible for an approximate
analysis of mildly nonlinear systems, for which the coefficient matrices
A(t) and B(t) are, in general, affected by uw(t). These extensions

are discussed in a later section of the paper.
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it may be shown that the piston motion can be modeled by a first-order

linear system of the form
X =-ax+bw(t) (7)

where the state x is the piston velocity, a is the ratio of the drag
coefficient through the slotted rail guide to the piston mass, and b
is the product of the pressure difference and the piston area-to-mass
ratio. Random variations in steam pressure are assumed to be a Gaussian
white noise signal w(t) with a constant variance Qw‘ If Qw is originally

set at Qw and then varied in both directions by a fixed amount GQw,
N

the problem is to determine the resulting variations in the state covar-
iance P(t).
The direct covariance algorithm in (4) may be used to propagate

the nominal value of Qw(t) to yield

2
b Q
T

Py(t) = Py(0)e™2 4 —

(1 -2 (8)

Variations about this nominal solution may be computed by using the

deterministic error analysis procedure, which yields from (6)

2
b (6Q )
8P(t) = 6P(0)e~22t 4 ——%—Q-"—’-—— (1 - e"28%y (9)

Comparisons are indicated in Figure 1 between these deterministic results
in (8) and (9) and corresponding results from the stochastic sensitivity
analysis algorithm to be developed in the next section. Numerical

data for these curves were obtained for a = b =Qw =1, GQw = 0.5, and

Py(0) = 0.
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DETERMINMISTIC RESULTS

FROM EQUATION (9)

STOCHASTIC RESULTS
FROM EQUATION (19)

;| |

Figure 1.

t—»

Comparison Between Stochastic and Deterministic Sensitivity
Analysis Results for Examples 1 and 2.

'
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STOCHASTIC SENSITIVITY ANALYSIS

The worst-case deterministic error analysis of the previous section
may be expanded to provide results that are less conservative. Using
the same techniques required for deriving (4), a similar error propagation
equation for sensitivity analysis may be developed for deviations in

P(t) due to stochastic variations in the input noise covariance matrix
Qﬂ(t)-
Let the matrix P(t) be expressed in terms of its column vectors

P; for j=1,2, ... , nas

P(t)= (E-]’ Rz, ey Rj, DRI En) (]0)
Therefore, one may form the vector p with n(n+1)/2 components as the

distinguishable elements of P, i.e.

(1)

where the notation [Ed]U denotes that only the upper j components
J

of the vector p; are retained in forming p. Similarly, since Qw is an

m by m symmetric matrix, the vector g of dimension m(m+1)/2 may be formed

as

B S N
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.....

[Q] ]U]
[q,]

g,

Let the covariance matrix of g be defined by

Edfa(t) - u (8)] [g(v) - ug(r)]T} = Qg(t)s(t-1)

where it is assumed that q(t) is a vector of white noise processes.

Corresponding to the uncertainty in Qw, the covariance matrix associated

with deviations in P may be expressed as

Palt) = ECp(t) - ()] [p(t) - uR(t)]T}

where ga(t) is the vector of dimension n(n+1)/2 corresponding to a

rearrangement of the elements of P(t) from (4) with Qw(t) = QEN(t)
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(12)

(13)

. S R [V
- - el

(14)

Expressing P(t) in terms of its column vectors as in (10) and ex-

panding according to (4) yields for the jth column vector R; the vector

differential equation
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. n T m T
By = hy, * bl 10 E gty 19

where Ej and gﬂ are n-vectors representing the jth columns of A and B,
respectively, and gk is defined as an n-vector with zero elements every-
where except for a single unity element in the kth row. Equation (15)
may be expressed for all j between 1 and n in the vector-matrix form

as

B =Ap+lg (16)
where repeated component differential equations in (15) have been omitted
in a manner similar to that used in forming p in (11). The matrices
A and T are n{n+1)/2 by n(n+1)/2 and n(n*1)/2 by m(m+1)/2, respectively.
Applying error propagation concepts as in (4), the matrix differential
equation for. the sensitivity covariance matrix P_(t) is

B

PE.(t) = A(t)PEﬂt) + P

T T
E_(t)A (t) + F(t)ngt)F (t) (17

which is the main result o€ this paper.

Example 2

Let the scalar system (7) of Example 1 have a Gaussian white noise
input w(t) with a covariance matrix Qw which is uniformly distributed
on the range (Q - 6Q , Q. + 8Q ). The problem is to apply the sto-

Wy W' Wy W
chastic sensitivity analysis algorithm (17) to determine corresponding
variations in P(t).

The stochastic sensitivity analysis equation in (17) for this scalar

)




axample becomes

. _ 4
Pp(t) = -4aPp(t) +b Qq (18)

where Qq for the given uniformly distributed random orocess may be easily
computed as (GQW)2/3. Therefore, the solution of (18) is

b*(80,)°

P,(t) = P, (0) g dat (1 - e~42ty (19)

122

Figure 1 compares these sensitivity results with those in (9) for
the parameter values specified in Example 1. In particular, the one-
sigma band Py (t) * /"Pp(t)" is shown for the stochastic algorithm.
While this comparison is interesting, it should be recognized that two
different situations are being considered in Examples 1 and 2. In
Exampla 1, the error GQw, i.e. the variation of Q, from QWN, is known exactly.
The resulting deterministic analysis yields the exact variation in P(t)
from PN(t). On the other hand, the stochastic problem in Example 2
has a randomly (uniformly) distributed Qw over a given range. Consequently,

the one-sigma band on P(t) about its nominal may be determined according

to the stochastic sensitivity analysis algorithm in (17).

A GENERALIZED SENSITIVITY APPROACH
It is instructive to reconsider the problem of the last section
in the more general context of nonlinear transformations at the system
input. If the uncertainty in Qw(t) is due to the presence of a second
white noise process r-vector, tﬂé nominal covariance matrix Q!N(t)

must be determined from the joint probability density function of

w(t) and s(t). It should be observed that the resulting Q, (t) may be
N

b W2
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different than that obtained previously under the assumption that s(t)

is non-random. If Qﬂn(t) is different, then (4) may be applied to yield

a new nominal state covariance matrix Pﬂ(t), which includes elements

due tc the propagation effects of the modified w(t). Moreover, the
sensitivity analysis procedure described earlier remains valid if variations
about the new PN(t) are considered.

Suppose the joint probability density function relating the components

of w and s is given by

wls = &) £, (s) (20)

Let Qw (t) be defined at any time % as
|

QLVN ¢ Elfw - nd [ - u!,_]T}

- (Jé (w-u) @-u) f o @ls=s) dd (@)

where the inner integral denotes an m-fold integration over the m com-
ponents of w and the outer integral an r-fold integration over the r

components of 5. Moreover, let § be a matrix of random variables at

any time t defined as

0= Jw-u) (w-u)f (uls=s) @ (22)
N uls

It follows from (21) and (22) that @ = E{Q }, which may be evaluated
Wy W

as

QEN = E(Q,) é Q, f5(s) ds (23)

e

e R LA B AV W KD r KPR s VPR 4. .
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becauze the uncertainty in Qw is assumed to be due to the randomness of
s(t). The resulting Qw is E}fferent from that which would have been
obtained from (22) by ;gplacing s by its mean Y- Therefore, the covar-
iance matrix associated with the uncertainty offb!f i.e. Qﬂ(t), must

be computed by using fs(éj as shown in the following exampie.

Example 3

Consider the system (7) of Example 1 with a scalar white noise input
w(t) which is uniformly distributed on the range (uw-s, "W+S)‘ Let
s(t) be & second uniformly distributed white noise process on the range
(us-a, us+u), where Mg and o are positive constants. The problem is
to determine the nominal state covariance matrix PN(t) and the sensitivity
analysis variations about that nominal as a function of time.

Since s(t) and Qw(t) are not identical in this example, the nominal
variance of w(t) will be different than the value which would have
been obtained by assuming that s(t) is non-random, i.e. s(t) ® Y.

For later reference, this value is given by

LT 2
1 u
Q. = E{(w-u )2 f W )2 T odw == (24)
Wy Wy ) W 2us 3
HyHg
and the resulting expression for PN(t) from (4) would have been
2.2
b -2at

The correct Q, (t) may be determined from (21) as
N

€ AV ST b M
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f ps-!-a uw+,5
f _ 2y _ 2(1 \[1 ) dwids
: Qw..z - elwn)" = J J o) (75)(_26)
! ' IR TS (26)
é vhich yields
!
ﬁ 2 o2 -
; Q = S $ =
' Wy T3 9
!

From (22) ,

+4

t uw 2
! = - 2 = = 6_...
; Qw -J. (w uw) fwls (wls =5 ) dw 3 (28)
' “w"’

' Therefore, the variance of Qw’ denoted by Qq, may be calculated as

g & 2 2
2 u ¢ 21 ds
a [8%/3 -(}35“' tTT' ) ] 20

2y ) (29)

1
N
~J
R
N
—
=
w
—
[8a)

Using (27) and (29), the corresponding values of PN(t) from (4) and

Pp(t) from (17) are

2 2 2
_ -2at b v o -2at
P(t) = Py(0)e™™" + = ( s . ) (1-e°%7)

and (30) |

4 2 )
(6] = P07 g |y <u§+—%~>] (1-e7%¢

(31)
The results in (30) and (31) are plotted in Figure 2 for a = b = Mg =1,
a = 0.5, and PN(O) = Pp(O) = 0. Also included for comparison purposes

is a plot of PN(t) for the case where s(t) is assumed to be non- random
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PN(“*,/ Pp(t)

fora =L

,/,z—'ﬁh(t) for C!=='3%‘

MR (t) for a = 0

Figure 2.

Stochastic Sensitivity Analysis Results for Example 3
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(e=0). . This example demonstrates the importance of determining the

correct Q
N
studies for general aerospace and electronic systems applications.

and Qq for use in error propagation and sensitivity analysis

NUMERICAL RESULTS

Consider the second-order linear electronic circuit shewn in Figure
3 and described mathematically by
S B

]
w(t)
R

1 K
V, = = =—= V,+ v (32)
2 R?_C2 2 RZCZ 1

where R]C] =1, R2C2 = 1/2, and K =1/2. The source voltage w(t), applied
for all t > 0, is a zero-mean Gaussian white noise process with an in-
completely specified variance Qw‘ The uncertainty in Qw is directly
attributablé to the fact that the standard deviation of w(t), denoted
by s(t), is also a Gaussian white noise process. The mean of s(t) is
1.0 and its variance 0.1. The problem is to determine the propagation

effects on the voltages across the capacitors, i.e. v](t) and vz(t),

Rz

R
w(t) ¢\ w(t) Cm Wwlt)

I |

Ficure 2. A Schematic Diagram of the Second-Order lLinear Electronic
Circuit Described by Cquation (32)
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due to the given white noise input w(t).

The value of Qw for use in (4) may be determined trom (23) as

+w

q,, = EQ) - jtm Q,f (8) &
+o

i} 2 .2, .2
-{ 8°F (8) &8 = af + u

00

where the variance Qw has been replaced by the square of the standard
deviation s(t). The expression in (33) yields the second moment of s,
which is equivalent to the sum of its variance and the square of its

mean. The component equations in (16) corresponding to (4) with Qw =

Qw may be written as

N
Py = 2a.9Py  * 231,y *0
P, = 221P, ¢ (ay7%ay,) Py, * 12PN, (34)
p = 23,4P + 2a,,p

The given resistor and capacitor values for the system in (32) yields

a]] = "], a-lz = 0, 32] = ], and a22 = "2.
The value cf Qq for the stochastic sensitivity analysis may be

determined as

L
A
!

. E{(ow-ow“>2} - Eigf) - o,

est - Qﬁn (35)

n
™
Q

[T AN
—~
Q

[ZA 0 AN

+
™)

=
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where the evaluation in (35) has been performed by expanding E{(s-us)z} =

og ’ E{($‘HS)3} = 0, and E{(s-us)4} = 302 and then substituting for E{s4}

as indicated. Therefore, the component equations in (17) for ég(t)

become

) = + + +
Ppyp ~ 21 Ppy, (3237 + 23, Prip " %12y " 2a‘zppzz

Pp,, = 2221 Pyt Blaggtag) Py ¥ 2rp By (36)

12 2 23

p

By By, T2t ag) Ryt 2y, Ppys

P13

Poyy = %21 Pp F B P

+ (a,,+33,,) p
P13 n* 22! Pp

* 212 pp33

P22 23

p

= 4a,, p
P33 21

+ 4a22 p

P23 P33

Numerical results are shown in Figure 4 for the equations in (34)
and (36). In particular, it is demonstrated that the one-sigma bands
from (36) about the nominal noise propagatisn results from (34) vary
considerably in magnitude. The bands for p]](t), plz(t), and p22(t)
were determined as pN]](t) + /Tﬁﬂ;TT?’, pN]Z(t) i_/"ﬁ;;;TETT and

psz(t) + Y/ pp33(f) , respectively. The other components of Pgﬁt) vere

used to determine the correlation between the band thicknesses in Figure

Sy e b Mont it ren ¢ et 1 svwa it ar 4 amemp . L st Ry e i e e,
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4. Correlation coefficients were defined as

A
= / t
P12 pplz(t) / ppn(ﬂ pp22( )

A
= / t 37
P13 ppw(t) / pp”(ﬂ pp33ﬁ (37)

A
Po3 = pp23(t) /Y ppzzm pp33(t)

3 Starting at slightly higher values for t = 0, these coefficients decreased
3 monotonically to approximately 0.77, 0.56, and 0.93, respectively, after
t = 1. Therefore, there exists a strong correlation between the

thicknesses of the one-sigma bands for the given circuit in Figure 3.

- et

DISCUSSION AND EXTENSIONS

A Gaussian assumption on the input signal w(t) is not required for
the validity of the stochastic sensitivity analysis algorithm, although

.f such signals frequently occur in practice. When the components of w(t)

E are jointly Gaussian, the resulting probability density function of the

linear system state x (t) is aiso jointly Gaussian and, hence, may be

o e~ oo —————

written explicitly in terms of P(t) and the state mean ux(t). Moreover,
3 i if w(t) is an m-vector of Gaussian colored noise signals, then an appropriate-

1y designed shaping filter may be utilized to yield an equivalent higher-

TIRSNE T

o

order linear system having a Gaussian white noise input. In those cases

where either s or w is a random bias signal, i.e. random variable, the

p
«
i
o
d

2
{3
3
pr/

noise propagation algorithm must be modified accordingly [11].
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The stochastic sensitivity analysis algorithm may be applied for
an approximate analysis of mildly nonlinear systems by considering linearized
incremental variations about nominal operating conditions [10,11]. In
such coses the nominal trajectory gN(t) is obtained by replacing w(t)
and x(t) in the nonlinear system equations by “w(t) and 5N(t)’ respectively.
The resulting tine function EN(t) is treated as—;n approximate estimate
of the mezn valne of the system state x(t). A Taylor series expansion
of x(t) about x (%) in terms of the variations 8x(t) is truncated after
first-order terms. Neglecting second and higher-order terms is reasonable
if the dynamical system is mildly nonlinear. Such linearization schemes
in filtering applications, where the nonlinear system state is observed
in the presence of additive measurement noise, has led to the variational
and extended Kalman filtering algorithms in common use today [14]. An
extension of the stochastic sensitivity analysis principle to these
filtering applications should yield some immediate useful results.

Finally, it is worthwhile to consider the similarities and differences
between the concepts developed here and those utilized in [15]. An im-
proved digital integration algorithm for mildly nonlinear systems was
derived in [15] by considering variations upon variations about the current
state. The similar concept of stochastic variations in Qw upon stochastic
variations in the input signal w(t) has been used in deve;bping the
algorithm of this paper. A major difference in the two applications
is that exact integration results were obtained for linear systems in
[15] by using a single variation, and further variztions yielded no new
information. On the other hand, a stochastic variation upon a stochastic
variation provided useful exact sensitivity results in the present paper.

Primarily of theoretical value, an extension analogous to the higher-

v uag
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order deterministic variations for nonlinear systems in [15] would be the
consideration of higher-order stocrastic variations ad infinitum in the

input noise statistics and the tolerances on their specification,

COHCLUSIONS

A direct stochastic algorithm has been developed in this paper to
provide sensitivity analysis information for linear systems with input
statistics which are random. The elements of the input signal
covariance matrix have been treated as white noise processes with known
statistics and covariance propagation concepts applied to yield the
new algorithm for determining stochastic variations in the state covariance
matrix about its nominal. Numerical results for a second-order system
have been presented to demonstrate the computations required in using

the algorithm.
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APPENDIX &

COMPUTER PROGRAM FOR THE STANDARD METHOD
OF MONTE CARLO SIMULATION

The program for the Monte Carlo technique using the standard
method has been included in this Appendix. A second-order system was
used to obtain Monte Carlo results for 25, 50, 100, 200, 500 and
1000 runs for comparing the results with other methods as discussed
in Chapter II.

Statements 35 through 46 were used to generate zero-mean, unity-
variance, Gaussianly distributed random numbers. Subsequent instruc-
tions were used for the calculation of the output variance and the
percentage error on the output variance. The Runge-Kutta second-

order formula (RK2) was used for integrating the second-order system.
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OIMENS ION XE{2)9XS{2) ¢ XM0(2) s 4410 2) 9S1200,SOLI10) +DIFL10) o XENILO)

I=0.

H= 0,05

NS=2

It=0

NYOTAL=100
MTOTsNYOTAL/10

DO 31 N=1,MTOT

SIN) = 0,

XEM{N)= O,

CONTINUE

XHEAN=O o

1x=31571

DUN=0,1

SI1G = SQRT(1e/H)

00 82 I=1,40

iFL 1.EQ.1) GO TC 81
IFt1.EQ.2) GO TO 81
IF(I.EQ.%) GO TO 81
IF(1.EQ.8) GO TO 81

IFL 1.EQ.20)G0 TO 81
IF(1.,EQ.%0)G0 TO 81

GO TO 82

NUN = 25¢]

ANUN & HUNM

ANUML s XNUMSXNUM

XNJNE = XNUM = 1,0
XNUKD = XNUMSXNUMR
Jisllel

00 32 H=JJy) NN

XE( 1)=0,

XE(2Mm0,

00 42 N=} 4MTOY

00 52 L=l,10

1y 19971¢X
[yP=lv/1048576
A=l YP®1048576

AXs IX

UsAX/1048376,
IF(U}S95+6

Ua=y

CONTINVE

la=ly .
LS QRT (=2.CALOGIOUN ) )#S516
XNORM =28C0S(6.2831 80U ) +XMEAN
OUN=y

CALL XEQN(XE9XMO 4 XNURN)
00 23 Ku] M$

AS(K )u ZE(K) tHEXNO( K)
CALL XEQUN(XSe XML oXNURK)
DU 24 K=],NS

XELK JnXE(K)#0 . SoH®( XMO( K} *XNLIK))
CUNTINVE

SIN) = SIN) ¢ XE(L)®XE(L)
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55 KEMIK} = XEMIN} ¢ XE(1)
58 &2 UNVINJE

51 32 CONTINUE

58 wKITEL G, B4INUM

59 &4 FORMAT (1X9//% KU. OF RUNS = 9,[5]}

60 wRLTEL6,15)

ol 4R {TEL & 83}

6z 83 FORMAT(TL1] o TIMES yT25,°SIMAD*¢T 3By *SOLINAR)® 4 T53,%01F(NAD®,T68,
63 1S XEN(NA)®) ‘
&4 U0 82 NA=1,nT0T

65 XMA®NA

(.1} T=He&XNA®10,
ol SALINA) 20.,08333333333-0.5%EAP(~2.0%T7)¢0,666666566T¢EXP(~3,007)
(Y] 1=0e 25 EXP(~4.0*T)

09 XEMINAJ = XEMINA)SXERINA) /{ XNUMSXNUMN)
70 XEM(NA) = XEMINA)JSXNUM3

73 SINA) = S(NA}/XNUM2- XEMINA)

72 DIFINA) = 100,0%( SINAJ-SOLINA)Y) /SOL(NA)
73 HKITE(OsT3ToSINA) ySOLINAJJUIFINA) s XEMINA)
76 7 FOKMATI10XsF542 y4F15.6)

75 62 CONTINUE

76 wKITE(b,15)

77 15 FORMAT(//)

Ts $S1=0.

79 DL 9T haA=l,MTQT

80 SS1=SS1+ABSIDIF (NA})

81 SINA) = (SINA)EXEM(NA))eANUM2

82 XEMINA) = SURT(XEM{NAJ/XNUN3 } 6XNUN

43 97 CCRITINUE

-1 $1=551%0,1

8s nkl TE(0¢94) 5L

46 94 FURMAT( 20X, *PER CENT ERROR = *,F20.8)
87 11=NUN

88 82 CUNTINUE

89 ST0pP

90 END

1 SUBROUTIXE £EQNIXCoXMD,RT)

2 DIMENSIOn XDE2) 4XMO(2)

3 XMU(1)=XDt2)

4 XMy (21==2.08XD(1)=3,0%X0(2) ¢RT

5 RETURN

6 END
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APPENDIX C

THE COMPUTER SOFTWARE PACKAGE APPLIED TO
THE LARGE-SCALE MISSILE SYSTEM

This appendix includes the implemented computer software package
ori the thirty-third order math model of a six degree-of-freedom air
defense missile system, In addition to the modification of the origi-
nal program, the nine subprograms which have been implemented a.e
COEFF, COVAR, RUNGKP, MDERIV, SNOISE, DETARA, INTA2M, RANDU, and
RANDG.

The main program initializes all the covariance matrix elements
and other variables used in the program., Subroutine INTAZM initializes
the coefficient matrix elements. The SYSINT subprogram updates the
nonlinear terms of the coefficient matrix, enters Subprogram COEFF
to eva]uafe the coefficients for the implicitly related variables,
and calls the COVAR subprogram where the covariance differential equations
are calculated. These eqgiations are then integrated by entering
RUNGKP from SYSINV, Subroutines SNOISF and DETARA are used to
calculate the variance of the noise introduced in the SESKER program.

A Tisting of all subroutines is provided on the following page

to indicate their location within this appendix,
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Subroutine

MAIN
INITIA
INTAZM
BLOCK DATA
SYSINT
RANDG
RANDU
FUNCTION XLIMIT
RK4

RUNGKP
SYSRUN
COEFF
MDERIV
COVAR
SEEKER
FUNCTION DEAD
SNOISE
DETARA
VANEMD
TARGET
ROTATM
TRANS
TRANSM
AUTOPT
AERODY
DTLUX1
THRCON
INTRP3
PRDATA
DATA
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k1
»
<] : wAV
1 L BFR
Y 2 C TERMINAL HOMING - ALL CIGITAL SIMULATION
+ 3 C s
4 C
5 € *%¢ SLANK COMMON HOULSES AERODYNAMIC COEFFICIENTS AND DERIVATIVES IN
3 . 6 C s%x TABULAR FORM FOR USE BY THE 1, 2y AND 3 VARIATE LOOK UP STHEME.
2 7 C
2 8 COMMON DXDYDZ{6C) +1ADD(2G) »AERG(1360)
3 9 C
H 10 C s*& COMMON BLOCK /T IMES CONTAINS CURKRENT TIME, STEP LENGVTH AND OTHER
11 C =*x EVENT TIMES IN THE SIMULATION,
- 12 C
2 13 CONMON /TIMES/T DT +TBC,TSTOPs IPReJy LAUNCH
K L4 DOUBLE PRECISIUN T,0T
3 15 ¢ .
3 16 € *#*% PROGRAM SELECTICN (MODULE TEST OR SYSTEM RUN) AND MODULE TEST
17 ( s+ DATA('WHEN MODE=2)
2 18 C
; 19 COMMON /CNTRL/MOOE, MDLS(4)9IVsDATAN(16+4)
k. 20 ¢
% 21 € *%x COMMGN BLOCK ZAUTOP/ CONTAINS INTEGRATIUN VAFIABLES, DERIVATIVES
4 , &2 ( **xx AND INTERMEDIATE VARIABLES REQUIRED BY ,HE AUTOPILOT MOOULE
b 23 C .
-2 24 COMMON 7AUTQOP/NAJVA(L15)sDVALLS),0VIT)
i ; 25 C
§ 26 C *%¢ COMMUN BLOCK /SEEKR/ CONTAINS INTEGKATION VARIABLES, OERIVATIVES
2 27 C **% AND INVERMEDIATE VARIABLES REQUIRED BY TNE AUTOPILOT MGDULE
E i 28 COMMON / SEEKR/ N3»VS(2),0V5(2),0Sv(8)
3 H 29 < .
»; f 30 G *¥% COMMON BLOCK /VANES/ CUNTAINS INTEGRATION VARIABLES AND DERIVATIVES
E ¢ 31 C «*% REQUIRED I[N THE VANE ANGLE CALCULATION MODJLE
i 32 ¢
] i a3 COMMGN /VANES/NVYVL4),DVV(4)4DEL(3) . 3
s 3¢ ¢
% 35 C *%¥ COMMON BLOCK /ROTATE/ CONTAINS ROTATIONAL VARIABLES AND OEF IVATIVES
3 E 30 L ®x%x USED IN THE MISSILE MOUULE
- 37 ¢
2 % 38 COMMON /ROTATE/NR 4PB 4QB sRby THETA P41 4PSI +OPB,0QBDRB¢DTHA+ DPHI
b 39 1y0PSE+SNTHA,CSTFA,SNPHI yCSPHI,SNPSIyCSPSI WP WQyWRyBYTHETA BPH,8PS
& ¢ 40 o
2 i ¢} C #%% COAMON BLOCK /STATEV/ COUNTAINS TRANSLATIUNAL VARIABLES AND
g 42 o« &¥% DERIVATIVES
2 ) 43 C
; H 44 COMMUN /STATEV/NT JUEVEsWEs X+Y2 2 yDUE+OVE yDWE +DX+DY,D2
45 C
p 20 € s%x¥x COMMON BLUCK sADOV/ CONTAINS ADDITIONAL VARJABLES DERIVED FROM
3 47 C %xx 1HE STATE (INTEGRATION) VARIABLES
Ju: 48 C
y 49 COMMON 7ADDV/AL: iP;ALFALBETAXMNyCSPHIP SNPHIP,QUE,VSS ¢+ RHO
50 ¢C
. 51 C *** COMMON B8LOCK /COEFS/ CONTAINS THE THRUST AND AERDYNAMIC
E 52 C **x CIEFFICIENTS AND DERIVATIVES OBTAINED 8Y TABLE INVERPOLATION
R 53 C
54 COMMON /COEFS/TFR,AERC(18)
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**% COMMON BLOCK CGATAINS AIRFRAME CONSTANTS GOVERNING AERODYNAMIC
*s% FORCES AND THRUST MISALIGNMENT

COMMON /GEGMK/S 9D+ XTCG+YTCG o ZTCGoRLL yRL2 sWUEIWVE,WWE

**%x COMMON BLOCK /MSINCG/ CONTAINS MASS, INERTIAS AND CG POSITION OF
*3% THE AIRFRAME PLUS THE CONSTANT VALUES FROM WHICH ThEY ARE OBTAINED

COMMON /MSINCG/ST yWO eWF ¢ XIX09XIYO9RLCGO+ROCGOsRDCGP o XM o XIX 9 XIY s
1RLCGRDCG

s*& COMMUN BLUCK /FCENKOM/ CONTAINS THE AERODYNANMIC FORCESs MOMENTS,
ss% AND THRUST MISALIGNMENT COMPONENTS

COMMON /FCEMOM/ FXAyFYAsFZAs XMXA2 XMY Ay XMZA o FTHX ¢ FTHY ¢ FTHZ

s%% COMMON BLOCK /INCEPT/ CONTAINS TARGEY POSITION AND VELOCITY,
*x%x TARGET-MISSILE INTERCEPT SPEED AND RANGE AND INPUTS TO THE SEECER

CUMMON /INCEPT/UTI3),XT(3), TNVEL » TMRNGE +BEP SZ +BEPSY

*&# COMMON BLOCK /TRANSF/ CONTAINS MATRICES FOR CONVERSION FROM
#*% VARIOUS COORCIMATE SYSTEMS 70 .OTHERS

COMMON /TRANSF/BCSECS(3,3)4ECSBCS(343),BCS6GCS(343),ECSGCS{3,43)

#%% COMMON BLOCK CCATAINS UTILITY VALUES SUCH AS GRAVITY ACC. AND
*3% RADIANS TO DU"REES CONSTANTS.

COMMON / AUTOR/ WQG+DQGeTAUZ TAUY,TAUL) GYZyRALYRB2oNP1,DP1,RK],
1PYAKLsPYBKL ¢PYI K14WQ1,0Q1,PYLIM,RLIM;GBIAS,QBIAS,RBIAS
COMMUN /VANEK /VGAIN,VL 1My VRLIM

COMMON / SEEKK/ SKSPSKSY,TSAMP,DTSAMP, CROSPT,CRASTPySYGBLS,SZGBIS
COMMON /UTILTY/GRTD ’

COMMON /VMG/ HyMS

COMMON /VMGL/P1(33+33)+DP6(33,33)

COMMON /VMG9/JUNK «VTIME Ly VI IME24VNOJ] SO+ NUMM ¢ NOMNAL

COMMON /BLOK1/DTH

COMMON /BLOCKL/P(33,33) ,0P(33,33),0P9(35,33)

COMMON /8LICK2/ A2(33+33)+KIK,KOUNTKICK,KAT,B2(2) +K400
COMMON / BLGCK?/KK3 3THRP,TIMP

COMMON /BLOCKS8/KKL +KK54VP

COMMON /BLOCK9/KOK, IS1 .

COMMON /BLIK2/ AVD(4},BVD(4)

COMMON /SNSE/ AREA(31),EZNOIS,.EYNOI SoVBEPSVBEPSZ,VBEPSY
COMMUN /MBLOKL/KOUNT Ly XNORM(4)951(33940)

COMMON /MBLOK2/SIGL 4DUMyXMEAN,IX¢NLo11912+K1¢N2

COMMON /MBLOK3/ 52(33440)

COMMON /MVMG/S3(40) K INTER,KONTER

COMMON /MVMGL/JX9YNORM(33) yDAMU+SIGU ¢ XMEANU, IS2

CUMMON /MVMG2/TEPSTG( 33} ,KITIKPRyTMVE,TMRNG +EZTMP,EYTHMP
COMMON /NVMG3/54(33)

DIMENSION LBLE10) +TRANFR{33)
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: i
" t
b CARD
109 ¢ .
b 110 C sssassses TEEIBES 8888 ses8e SEESEESEESSS0S
k. 111 C VTIMEL -- CONTROLS SWITCHING TIME FROM MONTE CARLO TO COVARIANCE PROGRAN
112 € VFIME2 == CONTROLS SWITCHING TIME FRCM COVARIANCE TO MONTE CARLO PROGRAM
113 C VNOISD —- CONTROLS THE NOISE INPUT IN DEGREES IN SUBROUTINES - TARGET
G 114 C AND SNOISE.
115 C NUM -- CONTROLS THE NUMBER OF MCNTE CARLO RUNS.
116 € JUNK == USED FOR PRINTING OUT A MATRIX ELEMENTS ONLY ONCE IN SUBR. SYSINT.
3 117 C DVH == USED AS A STEP SIZE FOR COVAR IN SYSINT SUBR.
e 118 C KQUNT -~ CONTROLS THE FREQUENCY OF CALCULATIONS OF A MATRIX COEFFICIENTS
b, 115 C  KAT == USED AS COUNTER FOR COVAR INTEGRATION ROUT INE.
E 120 C KICK -- CONTROLS THE FREQUENCY OF PRINTOUT FOR THE COVARIANCE MATRIX
3 121 €  KKly KK3, KK5,K400 -- USED IN COEFF SUBR. TO CONTROL THE CALCULATIGN.
% 122 € B2([) =- B MATRIX ELEMENTS USED IN COVAR SUBR. FOR CALCULATING P(1,1),P(4.4)
3 123 C  AVD(I), BVO(I) =~ USED FOR CALCULATING NL *A* MATRIX COEFFICIENTS IN
: 12 C SYSINT AND VANEMD SUBRS.
) 125 ¢ PL{I.K)y DPB(I+K) s DPI(I+K) =~ USED AS TEMPORARY STORAGE FOR COVARIANCE
2 126 C INTEGRATION
i3 127 € KIT -- USED AFTER SWITCHING FROM COVAR TQO MONTE CARLO PROGRAM,
] 128 C IKPR =- USED TO PRESERVE THE VALUE OF IPR.
3 129 C  KINTER == ATTAINS A VALUE OF NUM¢1l IN MAIN AND DOES NOT CHANGE THEREAFTER.
b 130 C KONTER =-- USED IN SYSRUN AND INITIALIZED IN MAIN TO CONTROL SWITCHING FROM
7 121 ¢ COVAR TO MONTE CARLO PROGRAN AFTER VTIME2.
: 132 C Niy Kl == USED IN SYSINT TO CUNTROL THE ENSEMBLE-AVERAGING INTERVAL.
3 133 € 152 -- USED TO CALCULATE RANDOM NUMBERS EQUAL TO THE OROER OF THE SYSTEM.
% 13¢ ¢ ‘tttttt‘lttttt‘t#l.‘0‘.ttt‘t“ttt‘tlt#ttt‘t‘tttt‘{‘l..tt‘tt‘ttt‘ttt‘”t‘tttt‘
7 135 €
3 136 READL5¢1) SKSP,SKSY , TSAMP s DTSAMP CROSPT ¢ CROSTPoSYGBISSZCALSy
2 137 1MQGy DQGs TAUZ s TAUYTAUL,GYZ yRAL,RB2sWPL 0P 19sRK1oPYAKL ¢ PYBKL 4PYIKL,
o 138 2WQL +0QL «PYLIM,RLIN,GBIAS s QBIASs RBIAS, P89 QByRByUE, VEHE ¢
k 139 ATHETAPHE 4P S1 90X oY 92 ¢Se09XTCG3YTCG9ZTCG RLY tRL2 y WUEyWVE WWEST 9w 0,
A i 140 4WF,X1X0,XIYO,RLCGO, RUCGOrRDCGP s VGAIN,VLIM,VRLIM
3 141 C
& 142 WRITE(4) SKSP ¢ SKSY, TSAMP,DTSAMP ;CROSPToCROSTP ,SYGBISS2ZGBIS
2 1%3 1WQGDQG,T AYZy TAUY TAUL,GYZ ,RAL,RB2,WP1, OP24RK 1o PYAK14PYBKL ¢PYIKL,
: 144 2WQ1,0Q1 4P YLIM+RLIM+GBIAS+QBIAS yRBIAS 1 PByQByRBYUE)VEIWE,
i 145 BTHETAIPHIsPST o XY eZ 0SsD 9 XTCS o YTCS 9 ZTCG oRLLWRL2 ¢ WUE ¢ WVE ¢ WWE ¢S] WO
3 146 4WF o XIX04X1Y0 RLCGO+ROCGOyRDCGPy VGAIN, VL IMoVRLIM
147 ¢€
% 148 C SEESE RS EERERECX KR A RSN R RIS EX S X RE S PR R R R E R XL R ARG RS KR SRR EE S S S SR E S S S SR S KSR
3 149 C  TO RJN THE PROGRAM AS NOMINAL, COVARIANCE, OR MOVTE CARLO OR THEIR
k5 150 L COMBINATIONS, USE THE FOLLOWING INITIALIZATIONS.
[} 190 C NOMINAL FLIGHT
Y 152 ¢ VTIMEL = 0.0
e ; 153 ¢ VTIMNE2 = {(THE VALUE OF *TSTOP')
3 { 154 C KINTER = {*NUM+LY)
p ! 155 C KONTER = (" NUN#L?)
3 156 ¢ NOMNAL = O
b 157 C COVARIANCE PRUGRAM
8 ; 158 ¢ VIINEL = 0.0
i 159 ¢ VTIME2 = (THE VALUE OF *TSTOP")
3 160 C KINTER = (*NUM+1')
4 161 ¢ KONTER = (*NUM#L')
i 162 € NOMNAL = 1

o do {p Vg i MMV IR B
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Y
N 'y

2 sy

CARD
1 163 ¢ KONTE CARLD PROGRAM
A 1e4 C VTIMEL = (THE VALUE OF *TSTOP?)
2 165 € YTINE2 = (THE VALUE OF ¢TSTOP*)
¥ 166 € KINTER = 1
3 167 ¢ KGNTER = 1
E: 163 ¢ NCHNAL = 1
to9 C FEEEL LSS SES LI PEE IS RE P L SR BB RREBERERFCL SR LSS EXBEE SIS S EEER 06558 CES56808
170 ¢
E 171 VTINEL = 0.0
b 172 VIINE2 = 12.02
2 173 NUM = 25
3 174 KINTER = 26
s i 175 KONTER = 26
: : 176 NOMNAL = 0
& | 177 VNOISD = 2.0
4 i 178 ¢
179 C ttl.t'!“#t‘t“UI‘tttltttt“tt‘tt““t“‘“‘t.tttt.l‘#ttltt.“..‘t“‘..t‘lr‘
F. i 180 ¢ NONINAL -- MONTE CARLO PROGRAM
3 ] 181 ¢ VTIMEL = 0.0
3 ! 182 ¢ VTINE2 = (SPECIFY THE SWITCHING TIME)
E e 183 € KINTER = ('AUM+1Y)
& : 184 ¢ KONTER = (YNUN#1¢)
4 ; 185 ¢ NOMNAL = 0
H i 186 ¢ COVARIANCE =~ MCNTE CARLO PROGRAM
3 i 187 C VTIMEL = 0.0
, : 188 ¢ VTIME2 = (SPECIFY THE SWITCHING TIME)
s ! 189 ¢ KINTER = (*NUM+1*)
: { 190 ¢ KONTER = (" NULM¢L')
i 19t ¢ NOMNAL = 1
| . 192 ¢ MONTE CARLO — COVARIANGE PROGRAM
3 ; 193 ¢ VIINEL = (SPECIFY THE SWITCHING TIME)
i ] 194 ¢ VIIME2 = (THE VALUE OF *TSTOP?)
X | 195 ¢ KINTER = 1
; | 196 ¢ KONTER = 1
4 | 197 ¢ NOMNAL = 1 R
5 ) 196 C MONTE CARLO ==~ COVARIANCE -~ MONTE CARLO PROGRAM
& { 199 ¢ VIIMEL = {SPECIFY THE SWITCHING TIME)
: : 200 C VTIMEZ = (SPECIFY THE SWITCHING YIME)
4 ! 201 ¢ KINTER = 1
. » 202 ¢ KONTER = 1
: ! 203 ¢ NCMNAL = 1
o . 204 [ AESEEEEEREP RS KBS ‘ttt““t.‘t“#t0"Ct“‘“‘...““‘0““‘.l‘.....“““.“‘
3 ' 205 ¢
3 : 206 NUMM=NUM ¢ 1
; i 207 JUNK = 1
s : 208 ISt =0
- 209 OTH = 0.0
210 EINDIS = 0,0
211 EYNUIS = 0.0
212 VBEPS = 0.0
4 213 VBEPSL = 0.0
£ 2tq VBEPSY = 0.0
-y 215 KIKK=0
; 216 KIKl = 0
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CARD
217
218
FA L)
220

’ 221

222

3 ! 223
. 224

- 225

226

2217

228

229

230

231

232

233 88

234
235

236

237
238

239

240
241 29
242 C
243
244

3 245

] 246 C

3 247 C **%

248 C

249

250

251

252

253 30

254

259

256

251

258

259

} 260

261

262

263

264

265

266 40

267

268

269 €

270 C +4%
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KOUNT = 10

KAT =0

KICK = 40

KIC = 1

KOK = 0

K00 = 0

KK} = 1

KK3 = 0

KKS = 0

VP = 1,0

B82(1) = 6750.0
82(2) = 6750.0
TMVEL = -0.10
TMRNGE = 10000.1
00 83 I=l+4
AVO{I) = 0.0
avo(l} = 0.0
D0 29 I=14MS
DO 29 K=l ,MS
A2( 1K} = 0o
DPLI+K) = 0o
P1(1,X} = 0.0
DP8{ 14K} = 0.0
DPY(I,K} = 0.0
PLI4K} =0.

SUBROUT INE INTA24 IS USED TO INITIALIZE THE A MATRIX COEFFICIENTS

CALL INTA2M
READ(5y 62) {AREAL1)41%1,30)
AREA(31) = 0.0

READ THRUST AND AERODYNAMIZ TABLES FROM CAROS

WRITE (6 +900)

KNTL = }

KNT2 = 3 .
iL=1

READ ( 5,910} Tede Ko (DXOYDZ (L) sL=KNTL1sKNT2),LBL
IF (1.EQ.999)G0 TO 40

WRITE (& +920) LBL

KNTL = KNT2+L

L = KNT2/3

1AGD(L) = 1L

KNT2 = KNT2+3

IF (J.EQ.0Q)J=]

IF (K.EQ.O}K:]1

U = [$JsK+IlL~L

READ (  5,920) {AERG(L) sL=IL,1U}

IL = 1U«l

60 T0 30

CONTINUE

G = 32.17

RTD = 57.2957795

CALL INIVIA TO INITIALIZE THE PROGRAN AND READ RUN DATA
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3 CARD
- 2711 C
. 212 CALL INITIA
4 2713 ¢
; 274 MS1 = 33
3 275 XNUM = NUM
be 276 XNUML = XNUMSXNUM
E 217 XNUN2 = XNUM = 1.0
4 216 XNUM3 = XNUM/XNUM2
p 279 NTOTAL = 1200
3 280 MTOT = NTOTAL/40
281 Ix = 31571
4 282 DUM = 0.1
i 283 JX = 28651
2 2384 DAMU = .12
3 285 SIGU = 1.0
3 28% XMEANU = 0.0
; 267 KIT = 0
; 288 IKPR = 40
4 289 D0 1004 IS=1,15
13 290 1004 YNORM(IS) = 0.C
S 291 D0 1005 15=11MS
292 1005 TEPSTG(IS) = 0.0
k. 293 DO 31 K1=1,MS1
< 294 D0 31 N1=1,40
2 295 S2(KilyN1} = 0.0
% 296 31 SI{KLyN1) = O,
8 297 00 81 [=1,40 ’
b 268 81 $3(1) = 0.0
5 299 DO 308 I=1,MS
300 S4(1) = 0.0
3 301 308 TRANFR(I) = 0.0
302 XMEAN = 0.
s 303 00 32 M1 = L.NUMM
: 304 DO 33 I=l.4
: 305 33 XNORM(1) = 0.0
306 WP = PB*RTD
I 307 WQ = QB3RTD
5 308 wR = RBSRTD
A 309 BTHETA = THETA®RTD
; 310 uPH = PHI®RTD
e f 311 BPS = PSI®RTD
E: | 312 TMVEL = =0.10
A { 313 TMRNGE = 10000}
- 314 Nl = 39
- | 315 K1 = 40
. ; 316 KOUNTL= ©
’ ' 317 C ttttt.tttttt‘ttlt‘O“tttt
d 318 IF(VTIME1.EQ.0.0)G0 T0O 32
4 a9 ¢ tlttttttttt‘tttt"‘t#ttt#
A 320 NS =2
3 321 vs(1) = 0.
; 322 vs{2) = 0.
i 323 NT = 6
% 324 NR = 6
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CARD
325
326
327
328
329
330
331
332
333
334
335
336
37
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
3617
368
369
370
371
372
313
374
375
376
an
378

C **%

32

302

305

303
304

311

306

135

NA = 1S

00 4 IS=1,15
VA(1IS) = 0.
NV = 4

DO 5 15=1+4 .
vviis) = 0.
utT(l) = 0.
uri2) = 0.
uT(3) = 0.
XT(1) 10000.
XT({2) = 0.
XT(3} 0.
REAIND 4

READ(4) SKSPySKSYsTSAMP.OTSAMP +CROSPT ¢ CROSTP»SYGBIS,S2681S,
IWQG, 0QGy TAUZy TAUY s TAUL sGYZ yRALRB2+WPL10PLoRKL ¢ PYAKL o PYBKL ¢ PYIK]
2WQL +0QL +PYLIMyRLIMyGBIASsQBIASyRBIASPByQBIRByUE, VEJWE ¢
3THETA ¢PHI 4P ST 9 X 9¥9Z 9SsD o XTCGoYTCG1ZTCGyRLL sRL2 ¢WUE S WVE JWNE ST WO,
4WFX1X0 4 XIY0,RLCGOyROCGO,RDCGP e VGAINoVLIM,VRLIN

DT = 0.250-02

IPR = 40

CALL INTHRC

CALL INTRAN

CALL INAUPT

[F{KINTER.EQ. NUNM}GO TO 32

CALL TOTAL SYSTEM RUN CONTROL ROUTINE

CALL SYSRUN

KINTER = KINTER ¢ 1

CONT INUE

IF(VTIMEL.EQ.0.0)GO YO 306

00 302 I=14MS

DO 302 IM=l,MS

DPI(1+1M) = S2(7 4N2)#S2(]HMsN2) & XNUM3/XNUML
DPBUI,IM) = OPBII1,IMI/ZXNUM2 ~ DP9{I,IM)
P(32+32) = 0P8(32,32)

P(33,33) = DP8B(33,33)

00 305 I=1,31

DO 305 IM=1,31

PII+IM) = OPE(1,1IM)

DP3LI,IM) = 0.0

OP9(14IM) = 0.0

DO 304 [M=1,MS1

DO 303 Nl=1,MTOT

S2(IMyN1) = S2(IMyNLI*S2(IMyNL)*XNUM3/XNUNL
SLUIMINL) = SLOIMsNL) /XNUMZ2 - S2(IM,N1)
CONT INUE

CONTINUE

DO 311 IM=1,MSi

WRITE(6 1202 ) IMs (SLUIM¢NL) 4N1=1l,MTOT)
WRITE(6+988)(S3(1),]1=1,MT0QT)
IF(VTIMEL.GE.TSTOP)GO YO 307

D0 36 I=l,4
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: CARD
3 319

3 381
F: 332
‘ 383
g 384
> 385
9 386
§ 387
4 388
389
K 390
4 391
i 392
. 393
4 394
5 395
396
397
393
399
400
> 401
402
403
k: 404
3 405
< 406
b7 ‘107
» 408

409
+190
4 411
s 412
i 413
Y 4l4
> 415
k. 416
417
k3 418
‘ 419
420

Ny )

-y

LRI n R

421
:, 422
3 423
¢ 424
425
426
427
428
429
%30
Br 431
1 432

o2 el g At

Sra

101

103

104
105

102
c

35

XNORM(I) = 0.0

CALL SYSRUN

IF(VTIME2.GE.TSTOP)GO TG 307
SEGEEBSEESEEE S SIS P IEI S LR

Gl = 0.0

G2 = 0.0

DP9(L+l) = SQRT(P(1,1))

00 101 1=24MS

DP9(1l,1) = P14 1)/0P9(1,1)

DO 102 I=24MS

Kx]~-1

D0 103 1J4=1,K

GlL = G1 + DPI(1J,1)*DP9(1J,1}

DP9(5,1) = SQRT{P(1+1)=G1)

00 135 JM=1+MS

IF( JM.LE.I) GO TQ 105

00 104 MI=1,K

G2 = G2 + DPI(M1,1)*DPI (Ml,yJN)

OPI(14JM) = (PLI,4JM) ~ G2)/DPILI,1)

CONT INVE

CONTINUE
SREEE SRS SREEEEEBEH SRR KR 0%

NUMN = NUM ~ ]

D0 34 M1 = 1:NUMN

00 35 I=ly4

XNORM(I) = 0.0

N1l = 39

Kl = 40

KOUNT 1= O

C $EESXEESRRESEES ISR S S

T = VIINME2
0T = 0.0025

C SEEEFEEAXRREXEXKFSXES

114

115

CALL INSYST

CALL INRK4

00 114 IM=1,MS
TRANFR(IM) = TEPSTG(IM)
182 = NS

CALL RANDU

DO 115 I=1,MS

DO 115 IM=1,!

TRANFR(I) = TRANFR(I)} ¢ DPQ(IMe I)SVNORM(IN)
00 113 I=1,15

VA(I) = TRANFR(I}

UE = TRANFR(16!
VE = TRANFR(17}
WE = TRANFR(18)

X =TRANFR(19)

Y =TRANFR(20)

I =TRANFR(21}

P8 = TRANFR(22)

QB = TRANFR{23)*
R8 = TRAVFR(24)
THETA = TRANFR(25)

136

Sk R At g s

S b i e sy |y e e v ey .

w




TR

s G A L

X 3 V7 B

R

fa A, S

2ol i g ik

Mo rras g

459
450
4061
462
463
464
405
400
457
4568
409
470
471
472
473
474

204
293

211
3act

62

202
900
910
920
930

988

PHI= TRANFR(26)
PSI= TRANFR(2T)

D0 3 IS = L+4
VVIIS) = TRANFR(1S+27)
VS{l) = TRANFR{32)
VS(2) = TRANFR{33)
IPR = K2R

TMVEL = THVE
TMRNGE = TMRNG

WP = PB®RTD

WQ = QB*RTD

AR = RB*RTD

BTHETA = THETASRTD
8PH = PHI®*RTD

BPS = PSI*RTD

0SV (1) = ELTMP
0SV(2) = EYTMP

CALL TOTAL SYSTZM RUN CONTROL RCUTINE
CALL SYSRUN

CONHTINUE

D0 203 IM=1,H5

00 204 N1 = 1,MT0T

S2UIMgN1) = S2( TMyNL)#S2{ IMsNL) #XNUM3/XNUML
SLUTMyNL) = SLEIMyNLI/ZANUMZ = S2(INyN1)
CONTINUE

CONTINUE

D0 211 IM=1l+MS
WRITE(64202) 1M, (SLUIN,NL) 4NL=1,MTOT)
WRITE(6,983)(S3( 1), I=1,MTOT)

sTop

FORMAT(3(8F10.47))

FORMAT (L0F8.6)

FORMATU /71Xy VAR(® 9124 oNL} =2 TELS5.5/5(13X,TEL5.5/))
FORMAT {(1Hl, 50X*T-H AERODYNAMIC TABLES')
FORMAT (313, 1X43F10,0y 10A4)

FORMAT (/45X+10A4)

FORMAT (8F10.0)

FORMATUI/LXy*STYIME =*410FL0.5/8Xe 10F10.5)
END
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CARD
1 SUBROUTINE INITIA
2 C &»s
3 C T4I 5 ROUTINE REZADS VARIOUS RUN DATA FROM CARDS AND INITIALIZES
4 C THE REMAINDER OF THE PROGRAM
5 C s&x
6 COMMON /ZINTRL/NGDE yHOLS(4) +IVDATAM{1644)
7 COMMON /T IMES/T 0T, T8O+ TSTOP,IPReJ HLAUNCH
8 COMMON /STATEV/NY JUESVE WE9 XY 2
9 COMMON /ROTATE/NRPB Q8RB THETA4PHI,PS1
10 COMMON /INCEPT/UT(3),XT(3)
11 COMMON /GEOMK/S D9 XTCGIYTCGyZTCGIRLLyRL2yWUEJAVEWWE
12 JOUBLE PRECISION T,0V
13 CALL INTHRC
14 CALL INTRAN
15 CALL INAUPT
16 READ ( 5:900) MCODE.MDLSy IV IT, ITCGy JRAIL IHIND
17 GO Y0{ 20,30} +MODE
18 20 READC  54930) (CATAM{JoL)edmly26)¢(DATANGJ12) 1dnly4)
19 READ ( 5+940)DT,TSTOP, IPR
20 IFLIVANELOIREADS S+GLO0JUE VE s WE v X oY 42 ¢+PB+QBRByTHEYAWPHIZPS]
21 IF (ITJNEJOIREADL 5,910)UT XY
22 IF{ITCG.NE. O)READ( 5,4910)XTCG,YTCGy2TCG
23 IFCIRAIL JNELOIREADL  5y910)RLLyRL2
24 IF{ IWINDJNEJOIREAD( 5,910 INUEWVE/WWE
25 LETURN
26 30 D0 40 (=1,4
27 {F (MDLS(1).EQ.0}G0 TO 40
28 READ( 5,920} DATAMIL:1)
29 READ( 5+910) (CATAM(Js1}sd=2y16)
30 %0 CONTINUE
31 RETURN
32 902 FORMAT (Lo615)
33 910 FURMAT(8F10.0)
34 920 FORMAT(£20.0)
35 93 FORMAT {2044 )
36 940 FOIMAT(2F10.0,4110)
37 END
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SUBROUTINE INTA2H

COMMON /UTILTY/G+RTD

COMMON /BLOCK2/ A2(33+33)

COMMON / AUTOK/ WQG,DQGsTAUZyTAUY ¢ TAULy GYZ4RALyRB2yWP140P 14RK1,
1PYAKLsPY3K1+PYIKL4WQl40QLsPYLIMIRLIM,GB1AS,QBIAS,RBIAS

TMP1 = WQL*WQL

THPZ = 2.*0UL*WCS

TMP3 = PYAK1*PYBKL

TMP4 = PYAKL+#PYBK1
TMPS = WQG*WQG
TMP6 = 2.#%DQG*WQG
TMPT = PYIKL*HQL*WQL/TMP3
C
C x%& CONSTANT *A' MATRIX ELEMENTS
C
A2(1s1) = =3,%¥TAUZ
A2{1+2) = TAUZ*A2(1,1)
A2{143) ==-TAUZ*TAUZ*TAYZ
A2(251) = 1.
A2(3+2) = 1.
A2(4+4) = =3.¢#TAVY
A2(4,45) = TAUY*A2({4,4)
A2(446) = ~TAUYSTAUY&TAUY
A2(554) = 1.
A20655) = 1.
A2(747) = =2,#DP1*WP1
A2{ 748} = -wPLl*HWPL
A2{T7126) = =A2(T+8)*RTD
AZ(Q'?) 2 1l

A2(10+2) = =TMPT
A2010¢3) = =THPTSTAUL
A2(10+5) = TNPT

A0 1046) = ~A2(10,3)
A2010,10}) ==TMP2
A2(10+11) = -TNPL
A2(10923)=RYDPTHPT
A2(10424) ==A2(10423)
A2(11410) = 1,

A2012y 2} = A2(10y 2)
A2(12y 3) = A2(10, 3)
A2(12y 5) = A2(10, 5)
A2{12y 6) = A2{10y &)
A2(12+10) = TMP4+A2(10410)
A2012911) = TMP3+#A2(10411)
A2l 12423) = A2(10423)
A2(12424) = A2(10,24)

A2(1342) » ~TMPY?
A2(1393) = =[MPT#TAUL
A2{1345) = =~TMPT
A2(13:6) = A2(13y3)
A2(13+13) = ~THP2
A2(13414) -TMPL
A2(13,23) A2( 12423}
t2{13424) A2(13423)
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A2(14513) = 1.

A2( 15, 2) = A2(12, 2)
A2¢15y 3) = R2(13, 3)
A2(154 5) = A2(13, 5)

A2( 15 6) = A2(13, 6)
A2115,13) = THP4eA2{13,13)
A2(15014) = THP3¢A2(134+14)
A2015:23) = A2(13,23)
AZ(15424) = A2(13424)

A2(19+16) =1.0

A2{20,17) =1.0

A2(21.18) =1.0

A2(26422) = 1.0
RETURN

END

BLOCK DATA

COMMON / SEEKF/ NS,VS{2),0VS(2),0SV (8}

CINMON / SESKK/ SKSPSKSY,TSAMP,DOTSAMP,CRUSPY +CROSTP,SYGBIS,S2GBIS

COMMON /AUTUP/NA,VALL5),0VAEL5),0V(T)

COMMON / AUTOX/ MCGs0QGTAUZ+TAUY TAUL,GYZRAL,RB2,WPL4DP1yRK ],
1PYAK1,PYBK1+PYIKL,dQL,DQL,PYLIM+RLIM,GBIAS+QBIAS ;RBIAS

COMMON /VANES/NV,VV(4),DVV(4)y DEL( 3}

COMMON /VANEK /VGAIN,VLIM,VRLIM

COMNON JVMG/ HyMS

DAY A HyM5/0,0025,33/

DATA SKSP¢SKSY,TSAMP +DTSAMP ¢ CROSPT yCROSTPSYGBIS1S2GBIS/3 493949
10.0590470.906904/

DATA NS,VS/ 2,2%0.0/

DATa WQG:DQG,TAUZ,TAUY,TAULGYZ s1RAL 9RB2 ¢ WP 4OP1 +RK1 ,PYAKL, PYBKI,
1?7!K10ﬂ°1'0011’YL1H' PL[M,GB!AS.QBIAS,RB!ASITB. Olo v15n 0150 ’zo *
26750- 112. 160. 0130.' ¢53' 033"’00'1500208' ‘1500 oé‘v 15"70' lo,OoO'Oool

COMMON /MSINCC/SI yWO WP ¢ XTI X0y XI YO+RLCGO o KDCGO sROCGP y XM XIX 4 X1Y,y
19LCG4+RDCG

COMMON /ROTATE/NRyPB4QB,RB,THETA,PHI,PS 3,0P8,DQB,DRBy DYHA¢ DPHI
1,0PSTy SNTHA, CSTHA,SNPHI 9C SPHI s SNPST CSPSI yWF +WQ ¢+ WReBTHET A+ BPH 4BPS

COMMON /STATEV/NT JUE,VE WE 9 X+Y 92y OUE,DVEDHE 4 DXy 0Y+DZ

COMMON /UTILTY/G,,RTD

COMMON /GEOMK /S 1D+ XTCHoYTLS3 4L TES oRL L 9RL2 4 WUE ¢ WVE o WHE

COMMON /INCEPT/UTI(3),XT(3),TMVELyTMRNGE) BEPSZ+BEPSY

CATA GoRTD/32.17,457.255T795/

DATA NT (NR/ oy 6/

JATA PB8,QB+FBIVE VEWNEs THETAyPHI4PS FoX1¥92/0609Q0900sels0ety00954¢
10.. 00 100'00 "lﬂ)' /

DATA NA,WA/15,15%0./

DATA NV,VGAIN VLIAyVRLIM/4 9154920442004/

VDATA VV/4%0./

DATA S+ Dy XTCGIYTCG LVCG/ 26T 9 ¢58%9 2475104004/

DATA RLLJRL2 yWUE s HVE ¢y WHE/3e596407 40440404/

DATA SIyWO0s¥2 4 XIX0y XIYO,RLIGOIROCSOyROCGP/1954811210919+444241,15.
111 '205’0 "'0375 "015/

DATA UT/3%0./

DATA XT/710000.¢0440./

END




141

4
} CARD
! 1 SUSROUTINE SYSINT
2 [ ==
% 3 C THIS ROUTINE INTEGRATES ALL EQUATIUNS OVER 1 TIME STEP
N 4 C =%
f E] COMMON /TIHES/T+LT,TBO,TSTOP,iPRyJ ,LAUNCH
i 6 COMMON /STATEV/NTVT(6) ,0VT{6)
; 7 COMMON ZROTATE/NRsVR(6) 4OVRU6) s SNTHA,CSTHA s SNPHT ,CSPHI ,SNPST +CSPST
, b 19WP s WQ,WR yBTHEY A4 BPH,y BPS
{ 9 COMMON /SEEKR/ ASsVS(2) +0VS(2),05VI8}
i 10 COMMON 7AUTOP/NAVA(L15):DVAIL5)+DVAD(T)
} i1 COMMON /VANES/NVoVV 14)+0VV{6 )+ DEL(3)
| 12 COMMON /MSINCG/STaWOoWF o XIX0sX] YO+RLCGO ¢RLCGOROCGP 1 XMe XTI Xy XIY
! 13 11RLCGYROCG
H 14 COMMNON /VANEK /VGAIN,VLIM,VRLIN
t 15 COMMON /7 AUTOK/ WQGDQGyTAUZ o TAUY ¢ TAUL ¢GYZ RALyRA2¢WPL ¢OPL (RK1 ¢
: 16 LPYAK]L sPYBKL 9 PYIKL WQL s0QL s PYLIMyRLINyGBIAS, QUIASRBIAS
: 17 COMMON /VNG/ HMS
‘ 18 COMMON /VNG1/P1(33,33),0P8(33,33)
19 COMMON /VNG9/7JUNK,VTIMEL VT IRE2 ;YNGISO. NUMM, NOMNAL
{ 20 COMMON /BLOCK1/P(33,+33),07(33433),DP9(33433)
f 21 COMMON 7BLOCK2/ A2(33933) K IK KOUNT 4KICK+KAT,B2(2) 4K400
> ! 22 CUMMON /8LOCK&/ VV5(4),DLTC(4)
é3 CUMMUN /8LOKL1/0TH
24 CONMMUN /BLIKL/BPhISM
25 COMMON /BLIK2/ AVD{4) ,8VD(&)
2¢ CUHMON ZINCEPTZUT(3)4XT(3),y TMVEL y THRNGE
27 COMMON /MBLOKL/ KGUNT 1 XNORM(4),51(33,40)
, 28 COMMON /M3LOK2/SIGL sDUM ¢ XHEANSIXoNL 911412 KL oN
29 COMMON /M8LOK3/ 52(33,40)
30 COMMON /MVNG/S3(40) ¢ KINTER
31 COMMON /MVMG2/TEPSTG(33) +KIToIKPReTMVE ¢ TMRNG +EZTM _YTMP
3e COMMON /NVMG3/54(33)
: 33 DDUBLE PRECISION T,0T, HALFOT
N 34 DIMENSION QT(12)+QR(12),QM30),QVIB)
35 C
! 36 € FPRRKEERE SR ERER AN AR R Y
317 IF(T.LTWWTIME2)IGO YO 4
38 IF(KIT.NELO)GO TO 7
v KINTER = |
40 KIT = ]
4l 00 1 IS = 1415
42 1 TEPSTG(IS) = VA(IS)
3 D0 2 IS = 146
44 TEPSTG(IS#L5) = vr(1S)
45 2 TEPSTG(IS#21) = VR{IS)
46 DO 3 IS=l,4
47 3 TEPSTG(IS+#27) = VvV(1S)
48 TEPSTG(32) = VS(1}
49 TEPSTG(33) = vS(2)
50 IKPR = IPR
51 THVE = THMVEL
52 TMRNG » TMRNGE
93 EZTMP = 0SV(1)
54 EYTMP = 0QSV (2}
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55
56
57
58

60
61
62
63
6%
o5
66
ot
68
69
70
71
72
73
14
75
76
17
78
79
b0
8l
82
33
a4
€5
86
u7
88
&9
90
91
92
93
1%
95

17

93

99
100
101
192
103
1J4
195
106
107
108

~NSEGO®

191
10

15
20

30

40

c

WRITE(6+8)(TEPSTG(I ) 151,33) o TRVETHRNG +EZTHP,EYTHP T

FORMAT(BE15.,6/418EL5.6/))
SEESESEEELSISSESRESSESI S

IF(KINTER.EQ.NUMN)GO TO 191
DYT = SNGLIDT)

SIGL= SQRT(1./0TT)

11 =1

12= 2

CALL RANDG

11 =3

12 = 4

CALL RANDG

DO 40 KUT = 1,4

GO TO (30,10,20,10)+KUT
T = T+HALFDT

GO TO (15+20) 44

CALL THRCON

CALL AUTOPT

CALL
CALL
CALL
CALL
CALL
CALL
CALL

YANEMD
TRANSHM
ROTATH
RK4{NA,VA,QA4KUT)
RK4 INV 4 VV,CV,KUT)
RK4(NTyVT,QT,KUT)
RK4ENRyVRy QReKUT)

CONTINVE

CALL AUTOPT
CALL VANEMD
CALL TRANSH
CALL ROTATH

C 2 REERRRERREE

IF(K INTER JNE.NUM4]IGO TO 1001
IF(T.LE.VTIMEL)GU TO 1001
1F(NOMNAL.EQ.0)G3 TO 1001

C X2 EERREERERE

C

C
C #*% NONLINEAR 'A' MATRIX ELEMENTS

c

12

13

22

IF(ABS(BPHI SM) (GE.{ RLIM-0.001)} GO 70 12
A2(9,7) = RK1#{RAL+RB2¢A2(7, 7))} /RAL/RB2
A2(9¢8) = RKl&({1.+A2(7,8))/RAL/RB2
A2(9,26) = RK1%A2(7,26) /RAL/RB2

GO0 70 13

A2(9+7) =0.0

A2(943) =0.0

A2(9426) = 0.0
IF(ABS(VA(12)) . GE.{PYLIN-0.00))} GO TO 22
A2026¢12) = VGAIN

A2(30+12) = VGAIN

50 10 23

A2(28412) 20.0
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143

4
i
:
A CARD
3 109 A2(30,12) =0.0 ,
3 110 23 IF(ABS(VA(15)).GE.(PYLIN-0.001)) 30 TO 32
; 111 A2(29+15) = VGAIN *
3 112 A2(31,15) = VGAIN
3 113 G0 T0 33 ,
3 L6 32 A2(29,15) =0.0
3 115 A2(31,15) =2.9
. 116 33 IF(ABS(WI(1)) .GE.( VLIN-0.001)} 52 VO 42
: 117 A2028428) = <VGAIN .
: 118 GO 1O 43 ‘
: 119 42 A2(28,28) 20,0
E 120 43 IF(ABSIVV(2]) .GE.( VLIN-0.001)) GO TO 52
2 121 A2(29+29) = =VGAIN
! 122 GO T0 53
2 123 52 A2029+29) = 0.0
: 124 53 IF(ABS(VV(3)) .GE.( VLIN-0.001)) 30 YO 62
3 125 A2(30,30) = -VGAIN
3 126 G0 T0 63
- 127 62 A2(30,30) =0.0
, 128 63 IF(ABSIVW(4)) .GE.( VLIN-0.001)) GV YO 72
! 129 A2(31431) ==VGAIN
s " } 130 G0 70 73
2 ; 131 72 A2(31,31) 20.0
; 132 73 CONTINUE
: 133 TIF(ABS(AVO(1)).GEL(VRLIM-0,001)) GO TO 83
: ! 134 A2(28+7) = A2(9,T1*VGAIN
! 135 AZi28+8) » A2(9,8)*VGAIN
. ! 136 A2)28,9) = 0.18VGAIN
A H 137 £2(28+26) =A2(9,26)$VGAIN Y
% ; 138 GO TO 84
j ; 155 83  A2(28,7) = 0.0
4 i 140 A2(2848) = 0.0 :
7 : 141 A2(2819) = 0.0 :
: | 142 A2(28412) =0.0
3 i 143 A2(28+26) =0.0
: i 144 A2(28+28) =0.0
: ‘ 145 8 1"(ABS(AVD(2)).GE.(VRLIN-0.001)) GO TO 93
F: f 146 A2029,7) = A2(28,T)
3 ‘ 147 A2(29+48) = A2(26,8)
: i 143 A2(2949) = A2(2849)
E: . 149 AZ(29126) = A2(28+26)
: 150 60 10 94
2 ; 151 93 A2029,7) = 0.0
5 152 A2(2918) = 0.0
3 . 153 A2(2949) = 0,0
3 . 154 A2(29+15) =0.0
: ' 155 A2(29+26) =0.0
156 A2(29129) =0.0
157 94  IF(ABS(£VD(3)).GE. VRLIN-0.001}) 30 TO 103
158 A2(30, T) ==A2(28,7)
159 A2030, 8) =2-A2(28,8)
160 A2(30, 9] ==A2(2819)
161 A2(30426) ==A2(28+26)
162 GO TO 104
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103

10%

113

114

133

143

153

163

A2(30,7) = 0.0

A2(30, 8) =0.0

A2( 30, 9} =20.0

A2(30+12) =0.0

A2(30426) =0.0

AZ(30,30) =0.0

IF(ABS (AVD(%)).GE.{JRLIN=-0.001)) GO TO 113
A2(31, 7} =A2(30,7)

A2(31y 8) =A2(30+8)

A2(31,y 9) =A2{30,+9}
A2(31+26) = A2(30+26) .
GO TO 114

A2(314+7) = 0.0

A2(31, 8) =0.0

A2(31y 9) =0.0

A2(31.15) = 0.0

A2 31426) =20.0

A2(31431) =0.0
1F(BVD(1).LE.C.0)GO TO 133
A2(2847) = 0.0

Az(28,8) = 0.0

A2{ 28,9) = 0.0

A2(28412) =0.0

A2(28426) =0.0

A2(28528) =0.0
IF(BVD(2).LE.0.0)GO TO 143
A2(2947) = 0.0

A2(029+8) = 0.0

A202949) = 0.0

A2(29415) =0.0

A2(29426) =0.0

A2129429) =0.0
IF(avD(3).LE.0.0)GO TO 153
A2(30,7) = 0.0

A2(30, 8) =0.0

42(30+ 9) =0.0

A2(30,12} =0.0

42(30426) =0.0

A2(30+30) =20.0
IF(BVD(4).LE.0.0)GO TO 163
A2(31,7) = 0.0

A2(3l, 8) =0.0

A2( 31y S) =0.0

A2(31,15) = 0.0

A2(31+26} =0.0

A2t 31,31) =0.0

CONTINUE

42(25423) =CSPHI

A2( 254 24) ==~SNPHI
A2(27423) = SNPHI/CSTHA
A2({27924) = CSPHI/CSTHA
A2(26423) = SNTHA*A2(27,23)
A2{26424) = SNTHA®*A2(27424)
A2(25926) = ~VR{2)*SNPHI=VR(3)#(CSPH!
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A
74
&
A
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CARD
217
213
219
220
221
222
223
224
225
226
227
223
229
230
231
232
233
234
235
236
237
233
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
PAT]
259
260
20l
262
263
264
265
2%6
267
2638
269
210

A2026925) = =A2(25426)/7(CSTHASCSTHA)
A202T7426) = (-YR(3I)ISSNPHE¢VR{2) *CSPHI)/CSTHA
A2(264+26) =A2(2T,26 )$5NTHA
A2( 27425) =2=A2(26425)%SNTHA
IF(KGUNT<NE.10)GO TO 111
KOUNT = O
CALL COEFF
C €S58S 8EA TSRS 6 S
1IF(JUNK.EQ.0)GO TO 111
00 333 I=1,4MS
333 WRITE(6434411,(A2(1 4K} K=1,1)
JUNK = O
C 53V XREEELAS IS EES
111 DTH = SNGL{DT)
DTH = DTH/2.0
D0 222 1J=142
KAT =1
D0 222 TJ=142
CALL COVAR
CALL RUNGKP
222 KAT = KAT ¢ 1
DO 29 Il=1,MS
IF(P(1]+11)eGE.L,0E~-10)GO TD 23
00 28 1Jd=1,MS
P(II,1J) = 0.0
P{IJ,1I) = 0.0
28 CONTINUE
29 CONTINUE
IF(KICK.NE.40)GQ TO 299
C xrsextvex
WRITE(S6 41250 (VT (1) 4124,46)
C ssssneens
HRITE(6,124)T
00 288 I=1.MS
288 WRITE(6+11)14(P{1¢K)Knl,yl)
KICK = 0
299  CONTINUE
ICK = KICK ¢ 1
KOQUNT = KOUNT¢1
344 FORMAT(/Z/ZLX o ALY 41240 ¢ J) =% TELS5,5/74(L1X,TEL5.57))
11 FORMATL/Z/1XoPU*9120% J) =, TEL15.5/4(11X,TEL5.5/))
124 FORMATILX " TIME = ' ,FS.4)
125 FORMAT( ¢ X3%E15.51° Y= 1ELS5454' Lx? 4E15.5)
C $300 35586 SRR EXBER KSR RBO S 428
1001 JF{KINTER.EQ.NUMMIGO TO &
C *58EXRREERESESERNEEREXSELPREEEE S
Nl = N1 =+ 1
IF(NL.NE.X1)}GO TO 6
KL = Nl ¢ 40
N2 = N1/490
00 201 IM = 1,15
S2(IMsN2) = SATMN2) ¢+ VALINM)
201 SLUIMINZ2) = SI({IM;N2) + VA(IM)}SVA(IN)
DO 202 IM=1,6
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? CARD
271 S2({1H+15,N2) = S2(IM¢15,N2) ¢ VT{IN)}

! 272 202  S1{IN#15,N2) = SLUIM#LS4N2) ¢ VI(IMIeVT(IM)

. : 273 00 203 IM=1,6

1 ( 274 S2(IMe2L4N2) = S2(TH#21,N2) + VR(IM)

5 ; 215 203 S1{IM#2L4H2) = SLIIM¢21,N2) ¢ VR{IM)eVA(IM)

, 216 D0 207 1Mal,é

: } 2711 S2(IM¢2T4N2) » S2(1Me2T,N2) + WW{IM)

: i 278 207 SLEIN®2T,N2) = SLUIM#2F,N2) ¢ VV(IM)sVV(IN)

F. 2719 DO 208 IM=1,2

280 S22 IM¢31,N2) = S2(1M¢3L14N2) ¢ VSIIN)

a 281 208  S1{IM#31,N2) = SLCIM¢3L4N2) ¢ vS(IN)SYS(IA)

k 232 TF(T.LT{VIIMEL ~ 0.0025) .0RT.GE.VIIME2)GO YO 307

g 233 Do 303 I=1,15

3 234 303  SAtI) = VA(D)

] 285 DO 304 I=146

3 286 S4(1+15) = vT{1)

4 287 30¢  S4(1+21) = VR(I)

: 283 DO 305 I=1,4

2 289 305 S4(1+427) = vv(}l)

. 290 D0 306 I=ly2

3 291 306  S4l3e31) = vS(I)

e 292 D0 301 I=1,MS

E ! 293 DO 301 IM=1,MS
; i 294 301 OPS{I,IM) = OPB(I,IM) + Sell)eS4llM} i
4 ; 295 307 TL = SNGL(T)

9 H 296 $3(N2) = T1

¢ t 291 ¢ RETURN

3 ‘ 298 ENTRY INSYST \

3 f 299 HALFOT = ,50¢08DT ‘
% 300 RETURN ’
o i 301 END

4 i CARD X
g 1 SUBROUTINE RANDG ;
- f 2 COMMON /MBLOK 1/KOUNT L, XNORM(4) ,51(33440) L
s ‘ 3 COMMON /MBLOK2/SIGL+DUMsXMEAN, IXsN1s 11412441

3 ' [ [ [ 23]

: H 5 ¢ THIS ROUTINE CALCULATES THE NORMALLY DI STRIBUTED RANDOM

2 . 6 C NUMBERS * XNORM'

) 5 7 C =%

k2 8 1¥=19971%1X

X ; 9 1YP=1Y/1048576

. . 10 IX=1Y-1YP%1048576

- ; 11 AX=1X

. 12 UsAX/1048576.

3 13 1F(ULLE 0.0 U=V

P 16 1X=1Y

e 15 1=SQRT(=2,0%ALOG(OUM) }*S)151

A 16 XNIRM(11) = Z#COS(6.28318s U)+XMEAN

! 17 ANORM{I2) = Z#SIN(6.28318%U)+XMEAN

A 18 DUM=U

¢ 13 RETURY

5 23 END

o

<

]

e

'»ﬂ
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A CARD
: ‘ ; ¢ SUBROUY INE RANDU
: i 3 C SESEPRESEEESECEECSE SRR ES LSS RS SRRSO RESESLSUSERBESSSSE600 08088
: H 4 C THIS PROGRAM GENERATES YFL WHICH IS UNIFORMLY DISTRIBUTED BETNWEEN 0 AND 1
b 5 € $2E5222R 0P REES SIS SRS SRS RES 288668 L 1] *se
i 6 C .
- 7 CONMON /MVMGL/J Xy YNORM{33 ), DAMU,SIGUs XMEANU 152
4 8 00 1 I=1,1S2
- 9 JY = JX%65539
3 10 IF(IY LT.0)JY=3Y4214748364T+1
11 dX = Jy
12 YFL = JY
13 YFL = YFL¥0.46566i3E~9
a 14 7 = SQIT{-2.0%ALOG(DAMU) ¢SIGU)
15 YNORM(I) = Z#COS(6.28318%YFL)+XHEANY
3 16 1 DAMU = YFL
j 17 RETURN
5 . 18 END
-
$
& |
D 5 zaA0p
Y ! 1 FUNCTION XLIMITEV,VLIN)
3 X 2 TFLABS(VI-VL IM)40,40410
- i 3 10 IF (V120,30,30
5 i ¢ 20 XLIMIT = =VLIM
x ! 5 RETURN
gl 4 6 30 XLINIT = VLIM
; i 7 RETURN
, i 3 40 XLIMIT = v
3 ; v RETURN .
; : 10 END
!
Ir .
] ‘; ‘
o .
Y 4
1
r'
S
3

. A O
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&
%
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1 CARD
1 SUBROUTINE RK4{ NV, QsK)
v 2 C sx%
3 C THIS ROUTINE INCREMENTS VARIABLES, GIVEN THEIR OERIVATIVES ACCORDING

g 4 C T3 THE. RUNSE-KUTTA & POINT SCHEME.

k> 5 C *%=&

. 6 COMMON JTIMES/T 0T ,TB0,TSTOP, IPR,JL¢LAUNCH
by 7 J0USLE PRECISION T,0T7

: 3 DIMENSION V {N), GIN}

3 3 00 50 T=1,N

3 10 JaN+1

: 11 GO T0(10,20+30,40),K

s 12 10 ) = V(g

5 13 Si{L) = V(N

j 14 V{1) = V{I)+DTOV2*V (J)

} 15 30 10 50

b 16 20 V(1) = QUI)+DTOV2*VL )

1 17 Q) = QLI WVIIIV(I)

A 18 GO Y0 50

e 19 20 V1) = QUI)+DTLwI(J)

. 20 G(J) = QUIT VLSOV

e > 2 GO Yo S0

K W2 40 V(I) = QUID4DTLH{QUIIHV(I))*0.1666667
& 23 50 CONTINUE

) 24 RETURN
3 25 ENFRY INRKG
& 26 DTOV2 = SNGL(DT*.5D0+0)
E: 27 OT1 = SNGL(DT}

& 28 RETURN

4 29 END

¥

%

;. ca-0

& 1 SUBROUTINE RUNGKP

. 2 COMMON ZVMG/ HyMS

4 3 COMMON /VMGL/P1(33,33),0P8(33,33)

Y 4 COMMON /6LICK1/P(33,33),0P( 33,33}

' 5 COMMON /BLOCK2/ A2(33433)4K IK1KOUNT KICKoKAT
- 6 COMMON /3LOKL/DTH

) 7 GO TD(10+30),KAT

- 8 10 00 20 T=l,MS

b 9 20 20 J=l,}

; 10 PLUIIY = PLILY)

5 ol 0PBL1,d) = OP{1,4)

< 12 20 PU1¢d) = PUL,J) ¢ DTHSDP(I,4J)

e 13 RETURN

i ; 14 30 VDT = OTH/2.0

9 ! 15 DO 40 I=z1,MS

3 ! 16 DU 40 J=1,1

L i 17 40 P{T4d) = PLU1,J) ¢ VOT*(DPB(14d) & DP(I,)}
: ) 18 % ETURN

H . 19 END
g :
%1 +

%3
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SUBROUTINE SYSRUN

C

C THIS ROUTINE CONTROLS THE CALCULATION OF THE WISSILE TRAJE. TORY

c AND TARGET-AISSILE INTERCEPT POINT, THE PRINT ROUTINE 15 CALLED a
C AS REQUIRED TO PRINT RESWLTS. :
C

CGMMON / INCEPT/ UT(3) s XT(3)  THVEL » THRNGE +BEPSZ ¢ BEPSY
COMMON JSTATEV/NT,UB, VB, WBs X{3)9DUELE)

COMMON /COEFS/THR,AERCI18)

COMMON JTIMES/T 40T TBOs TSTOP 11 PR+ J ¢ LAUNCH . .
COMMON IGEOHKISanXTCGoYICG.l‘CGcRLlollonUE'HVEoHHE 3
COMMON / SEEKR/ NS4BTHTGBPSIG,OSVIL0}

COMMON / VANES/ NVoVV(4)eDVV{4) 4DELQsDELR 4DELP

COMMON ITRANSFIBCSECS(3¢3)'ECSBCS(3.3).5CSGCS(3:3);ECSGCS(3'SD
COMMON #3LOCK1/P(33,33) +0P(33,33)

COMMON /BLOCK2/ AZ(33133)vKIKoKOUNT'KICKoKAT|82(2)oKbOO

COMNON /8LOCK9/ KOK ]
COMMON /VHG/ HeHS

COMMON IVHG9IJUNK.VTIMElcVTINEZoVNOISD,NUNH

COMMON /FMVMG/S3 (40) +KINTER ¢ KCNTER .
COMMUN I!V‘GZITEPSTG(33D9KIT'IKPRvTNVEvINRNG +ELTHPEYTHP 3
COMMON /MBLOK1Z KOUNT Lo XNORM{43,S1{33+40) :
DOUBLE PRECISION T,DT,5VDY !
DINENSION XNOLO(3),TOLDE3),XST(3)

S

SHSE T

- ——

v
WWNNNNNNNNNNF'—".‘D‘VPPPU—
wocmﬂbmwa~oomuvm#wNwOOOdow0w-

Ky C .t‘l.‘tll“tt.t#tl“t#‘ttttt
3 IF(KIT.NE.OIGO TU 4 )
=1 C ttttt.“‘.tl“#.t‘ltttttttlt N
> ¢ :
C es% PRINT DATA HEADING AND INITIALTZE LAUNCHER DYNAMICS INDEX :
c il
4 CALL PRHEAD 3
it 2 LAUNCH = 1 :
X 33 ¢ 2
: 3; C ss+ INITIALIZE AERODYNAMICS ROUTINE, DERIVATIVES ANO TARGET POSITION. ;
35 ¢ ;
5 36 DELQ = 0.0 !
i \ FY DELR = 0.0 .
34 DELP =0.0 ;
! 39 THR = 0.0 )
- ¢ 40 T = 0,00 ¢
4 ; 4l BEPSZ *0. .
S : 42 REPSY = O, 7
, 43 CALL THRCON .
g ] 4% CALL TRANSM
L ! %5 CALL ROTATM
; 46 CALL INTGT
47 BERSZ = 0.
b 48 BEPSY = Q. :
49 CALL INSEEK ¢
) 50 CALL AJUTOPT '
S 51 CALL VANEMD y
b 92 d=1 '
s 53 K=l :
54 00 S 1s1,3 )
<,
4
'i‘ ;
g :
.f
3
A

o)

AR
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CARD
55 5 XSTE1) = X(1)
56 SVOT = OT
57 N = IDINFI{OT/.50-3)
55 IPR = N®IPR
59 DT = ,50-3
60 CALL INSYST
ol CALL INRK4 .
62 € SEEESEREEL SR L LAEEESAEEGE SR
63 4 IF(IPR<EQ.40)K=]
64 C CFERREEEEEF EXERABRE SRR EFF AR &
65 €
66 L ¥*x INTEGRATE MISSILE EQUATIONS AND CALCULATE TARGET-MISSILE POSITION.
67 C
68 10 KSTEP =0
59 CALL PRDATA
70 20 D0 25 I=1.3
71 XMOLD{I )= X(I)
72 25 TOLOLIY = XT(1)
73 CALL SYSINT
T4 CALL TARGET
15 CALL INSEEK
16 GO Y0 {70+90) +J

7T IF(THR 180+ 80,90

18 80 J=2

19 CALL ROTZER

40 90 GO TO (75985+95) + LAUNCH

Iy
x
!
3
7
7

4

31 15 00 76 1s1,3
32 16 XMOLD(I) = X(1)=XST(I) 2
43 CALL TRANS{ECSBCSsXMOLD,TOLD) 3
84 IF tTOLDIL).LTLRLLIGO TO 45 ‘
85 LAUNCH = 2 4
86 WRITEL 6,910)7 ;
87 60 TO ¢5 g
4

o3 857 00 86 I=1,3
¥y 86 XMOLD(T) = X(1)=XST{1}

vo CALL TRANS(ECSBCS+XMOLD,TOLO)

/ l 91 IF(TOLO(1).LT.RL2)30 TD 45

Y ; 92 LAUNCH = 3
A ¢ 53 WRLTEL 5492017

s f 34 1PA = [PR/N .
E: ; 735 N = IOINT(T/SVDT I+l - g
A ! 9% 0T = OFLOAT(N)®SVDT-T %
; ot CALL INSYST 5
: 98 CALL INRK4 4
e : 99 CALL SYSINT 4
2 ' 100 DT = SVOT ¢
3 . 101 KSTEP = MOC(NsIPR}=~1 ¥
9 ‘ 102 CALL INSYST 4
-y ‘ 103 CALL INRK4 C%
E ; 104 95 GO TO (30,40),K %
b ‘ 105 ¢ 4
3 106 C #%3 [F MISSILE WIVTHIN 5 FT. OF TARGET,DIVIDE STEP LENSTH BY 2(FIRST TIME). )
" 107 30 IF(THRNGE.GT.5.)GU T0 40 ?
4 166 DT = .50+0%DT 3
X M
L :
3 .
:
E ;
% i
,': R ;S
2 i
3 i
& 3
! :
3 3
. {
L, ;
4

g

(Y

B 0 s b
o2 5, o 4 Aty SRR £\ g oy
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CARD
109
1:0
11!
112
113
114
115
115
117
118
119
129
1el
122
123
124
125
126
127
128
129
130
13!
132
133
134
135
136
137
138
139
140
141
142
143
144
145
L46
147
148
149
150
151
152
153
154
155
156

c

C s
¢ sxs
c

40

45
C

IPR = IPR+IPK
K =2

IF MISSILE-TARGET RELATIVE VELOCITY IS POSITIVE'INTERCEPY HAS
OCCURRED

IF{ TMVEL.GE.0.0) GO TGO 50
IF(T 6T ISTOP) RETURN
KSTEP = KSTEP+1

(AL E22 I 2223 E2 22 23

1

c
c
2
c
C *ex
C

5

0

60

288

124
900
9l0
920

61

IF{KONTER<NE.NUMMIGO TO 1
50 10 2

KONTER = KINTER
IF{T.GT.VTIME] ) RETURN

FREEEEE XL SERERES

IF (KSTEP-I1PR)20,10,10
CALCULATE NISS CISTANCE FROM CURRENT AND PREVIOUS POSITIONS

A ® 0,

8 s 0.

C = 0.

90 60 1=1,3

TMPL » XMOLO(1)=TOLD{(I}

A s A*TNPLETMPL

THP2 & X(1)=XT( 1)

B = BeTMP2OTMHP2

TMPL = X(1)}=XMOLO(I)

C = CeTMPLOTHP]

AsSQRT(A)

BsSQRT(8)

C » SQRT(C)

I = S5%{AeB¢C)

A 3 2,8SQRY(Z%(2-A)s{Z-B)¢11~C))/C

WRITE ( 649900) A

WRITE(64124)T7

TF(VTIME2.LY.TSTOPIGO TO 61

DO 288 1n14MS

WRITE{6411)14(P ULy} oKel,y])

FORMAT(/ZZ71Xe'PL 412y % J) mtyT205.5/6(11X,TELS.5/))
FORMAT(LX ' TIME = ' FB44)

FORIMAT (/720X tsewse  MISS OISTANCE $8e861,Fl0e2y ' FT4!)
FORMAT (LOX+'FIRSYT LUG OFF LAUNCHER AT T & 'y FB.4)
FORMAT (10X,'SECOND LUG OFF LAUNGHER AT T = ',F8,.4)
RETURN

END
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SUBROUTINE CUOEFF
THIS SUBROUTINE CALCULATES THE IMPLICIT *A* MATRIX ELEMENTS

COMMON / SEEKR/NS CTHTGyBPS IGoBTHD,BPSDIEZIEY,ISVL 6)

COMMON /7 INCEPT/UT(3) +XT{3) »THVELTMRNGE,BEPSZy BEPSY

COMMON 7 AUTOP/NASZPLo2P2,2P3,2Y1,1Y2921Y3+2R11IR2+BPRIS2P11,1P12,
LEQDCRZYI1 4 ZYI2 4EVNCRy2PDYy ZP02, 2PD39 2YD192Y0D2,2YD3,2ZRD142ZR02
28PHISD+2P1ID14LPID2,EODCROy 2YIOL s ZYI D2 ¢EVNCRD 9 EZSS+EYSS o WQCWRC,
3EZRR,EYRRyBDELPC

COMMON 7 AUTOK/ WQG+DQGyTAUZ+TAUY 4TAUL,GYZ,RAZ,RBZyWP1,0PIsRK 1y
1PYAK 1o PYBK1PYIK1,WQ1,0QL+PYLIM,RLIMGBIAS,QBTIASRBIAS

COMMON /STATEV/NT,UE,VEsWE+X(3)9DUE,DVE,DWE,DX,0Y,02

COMMON /ROTATE/NR,PB QB yRByTHETA9PHIPS ! :DPBy DQBy DRBy DTHA, OPHI,
10PST, SNTHA; CSTHA s SNPHT yCSPHY 9 SNPST 4CSPST oWF ¢WQ,WR, BTHETA, BPH, 8PS
COMMON /MSINCG/S1 WO WP ¢XIX0¢sXIYO»RLCGOyROCGOsROCGP ¢ XM o XIX ¢ X1 Yy
1RLCG4RICG :
COMMON /FCEMOM/ FXA9 FYASFZAy XMXA o XMYA ¢ XMZA oFTHX FTHY JFTHZ
COMMON /TRANSF/BCSECS(343)+ECSBCS(3+3)BCSGCS{3+43)4ECSGCS( 3,43}
COMNON /VANEK/VGAIN VLIM,VRLIM

COMMUN /COEFS/THRsCMQyCNRyCNPoCY2,CL3¢CXOsCMO+COCMCNFCN2y
1CLP ,CL2yCXC 2 CNQCMOQP ,CLORP 4 CHRCLD

COMMON /ADDV/ALFAP ¢ALFA+BETA + XNNsCSPHIP o SNPHT P4 QUE,VA4RHO
COMMON /TIMES/T20V,TBG,TSTOP,1PkyJy) LAUNCH

COMMON /GEOMK/S+DoXTCG1YTCG 9ZTCGoRLL ¢+RL2 yWUE NV E¢WNE

COMMON /VANES/NV,WV(4)+1DVVL4),IEL(3) )

COMMON /UTILYY/G4RTD

COMMON /VMG/ HMS

COMMON /8LOCK1/P(33+33),0P{33,33)

COMMON /BLOCK2/ A2(33433)+KIKsKOUNT 9K ICK 4 KAT

COMMON /BLOCK6&/ BACS(3)

COMMON / BLOCKT/KK3,THRP, TIMP

CUMMON /BLOCKS/ KKL +KK54VP

COMMNON /3LOCK9/KOK

COMMON /BLOCCL/ CUELy DVEL,DNEL,DPBL,0QB1,DRB2

DUUBLE PRECISIUN T, OT .

DIMENSION X6€3) ¢BCSECL(343)9ECSBCL(3,43) 4VV1(4),DELL(3)

KKL = 0

KK2 =1

KK3=7

KKe = 1

kK6 = 1

UEl = UE

PPl = SQRT(A8S{P(16,161))

UE = UE ¢ 0.1

IF(PPl.GT+0.1 ) UE = UEL ¢ O.1¢PP]

GO TO 143

D0 21 =1,3

DEL1(I) = DEL(I)

IF(ABS(VV(III) JLE.VLIMIGO YO 3

YVEIT) = XLIMIT(VWIII),VLIM)

TMPL = VV{1)+VV (2}

TMP2 = VV(3)+VV(4)

DEL(1) = 0.25¢( TMO1+TMP2)
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E: ZARD
i 55 DEL(3) = 0,25¢( YNP2-TNPL)
3 56 DEL(2) = 0,25%(VW{2}eVV{%)=VV(11~v¥(3))
§ 57 XK1 = 0
: 58 60 TO 343
i3 59 543  SNTHAL = SNTHA
@ 60 CSTHAL = CSTHA
61 SNPHIL1 = SNPHI
62 CSPHI1l = CSPHI
63 SNPST1 = SNPSI
E 64 CSPSI1 = CSPSI .
i 45 D0 7 16=1,3
: 66 00 7 JJ=1,3
; 67 BCSECL(1GsJJ) = BCSECS(IGeIS)
b 68 7 ECSBCL(IG4JJ} = ECSBCS(1G+4J)
E: 69 143 RHOL = FHO
g 70 VPL = VP
3 71 VAL = VA 3
3 72 QUEL = QUE Z
13 XYNL = XMN %
] 74 ALFAl = ALFA g
A 75 BETAl = BETA .
s 15 ALFAP1 = ALFAP E:
y 77 CSOHIL = CSPHIP 3
: 73 SNPHIL = SNPHIP o
e 79 THRP1 = THRP D
5 30 TIMPL = TIMP s
'3 81 XML = XM )
62 XIx1l = XIX !
4 83 X1¥1 = XY :
¢ 84 RUCGL = ROCG i
? 85 THR1 = THR §
% 86 CHQL = CvQ L%
A a7 CNRL = CNR Lok
# a8 CNPL = CNP y A
A 89 €Y21 = CY2 8
E 90 L3l = CL3 g
% 91 CX01 =2 X0 i7
: i 92 CHOL = CMO ;3
; 93 LDCHL =CDCH Py
3 ' 94 CNFL = CNF 3
3 ' 95 CN21 = CN2 3
3 ‘ 96 CLPL = CLP 3
P X 97 cL2l = CL2 3
: 98 CXCl = CXC 5
§ 99 CHQL = CNQ, :
3 100 CLORP] = CLORP §
) 101 CHDQP1 = CMODQP .
3 102 CHAL = CMR :
@ 103 LDy = Cid ¥
R 1064 343  FXAL = FXA ;
g 105 FYAL = FYA :
b 106 FZAL = FLA :
g 107 XMXAL = XMXA o
- 108 XMYAL = XMYA ;
St . g
3 ¥
: i
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CARD
109
il0
i1l
112
113
114
115
116
117
118
119
120
121
122
123
124
125
120
127
128
129
130
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
l46
147
148
149
150
151
152
153
134
152
156
187
158
159
160
161
162

144

555

171
155

XMZAL » XMZA

FTHXl = FTHX

FTHYL = FTHY

FYHIL = FTHL

CALL TRANSM

IF{KK2,EQ.2)G0 TO 22

CALL THRCON

GO TO 22

A2(11,J1} = (DUEL-DUE)/ 111
A2(11+14J1) = (DVEL-DVE)/ZI1
AZ(1142,J1) = (OWEL-DWE)/211
A2111¢6,J1)= (DPBL-DPEN/IIL
A2011+7,J1)= (DQB1-DQB) /221
A2{11¢8,J1)= (DRBL-DRB}/ZZ1
IFIKK3.EQ.TIGO TO 155
IF(KK1.E2.1)G0 TO 555

DO 4 1 = 1,3
DEL(I} = DEL1(Y)
GO T0 355

SNTHA = SNTHAL
CSTHA = CSTHAL
SNPH1 = SNPHIL
CSPHI = CSPHIL
SNPSI = SNPSIL
CSPSI = CSPST1

00 171 15=1,3

DO 171 J3=1,3

BCSECS(16,Jd) = BCSECL{1GeJJ)
EC3BCS{15,4d) = ECSBCLLIGIN
RHO = RHOL

VP = VPl

VA=VAl

QUE = QUEL

XMN = XMNL

ALFA = ALFAL

BETA = BETAL

ALFAP = ALFAPL

CSPHIP = CSPHIL

SNPHIP = SNPHIL

THRP = THRPL

TINP = TMPL

XM = XHL
XIX = AIX1
X1Y & X1Y1
apC6 = RDCGL
THR = THR]
CHQ = CMQl
CNR = CNR}
CNP = CNPL
cY2 » gv2l
CL3 = CL31
CXO = CXOL
CHO = CHOL

COCM = CDCM1
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CARD
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
166
187
188
189
190
191
192
193
14
195
196
167
138
199
200
201
202
203
204
205
206
207
208
209
210
21l
212
213
214
215
216

355

64

44

45

46

‘FYA

CNF = CNF1
CN2 = (N21
CLP = CLPI1
cL2 = cLzl
CXC = CXC1
CNQ= CNQL

CLORP= CLDRP1

CHMOQP = CMDQP1

CMR = CMR1

CLY> = CLD1

FXxa FXALl

FYAL

FIA = FIAl

XMXA = XMXAL

XMYA = XMYAL

XMZA= XMZAIL

FTHX = FTHX1

FT4Y ¥ FTHYL

FTHZ = FTHl1

GO TO(143,543¢6439343+5T7)9KK6
Ill = UE -UEl

KK = 2

UE = UEL

VELl = VE
PPl = SQRT(ABS(P?(17+17)))

VE = VE + 0,001

1F(PP1l.GT..001) VE = VEL + J.lsPPl
I1 = 16 .
Jl = 16

50 T0 144

Ll1=VE-VEL

KKG = 3

WEL = WE

VE = VEl

poy = SQRTI(ABSEP(18,L8)))

WE = WE + O.1

{F(PPL.GT.0.1 } WE = .+ 0.1%PP]
J1 = 17

GU TO 144

211 = WE-WEL

KKé = 4

X6(3) = X(3)

WE=WEL

PPl = SQRT(ABS(P{21 421} )}

X(3) = X(3) + 1.0

TF(PPL.GTo1e0 ) X(3) 2X6(3) ¢ 0.1#PP1
Jl1 = 18

GO TO 144

12l = X(3)-X6(3}

KK4 = 5

THETAL = THETA

X(3} = X6(3}

PPl = SQRT(ABS(P{25,2511)1}

THETA = THETA + 0,01
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CARD
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
2417
248
249
250
251
252
253
254
255
256
257
258
259
200
61
262
203
254
265
266
267
268
209
270

47

48

49

50

51

156

IF(PPL.GT L0.0L)THETA =THETAL+ 0.13PP1
KKL = 1

KK6 = 2

J1 = 21

30 TO 144

Z11 = YHETA-THETAL

KKe = &

THETA = THETAL

2S11 = PSI

PPl = SQRT(ABS(P(27,2T7)))

PSI = PSI ¢ 0,01

1F(PP1.GT.0.01) PST = PSILl ¢ 0.1%PP1

KK3 = &

Jl = 25

G0 TO 144

7} = PSI-PSIL
KK4 = 7

PHIL = PHI

pSt = PSIL

PP1 = SQRT(ABSIP(26,26)))

PHI = PHI ¢ 0.01

1F(PPLl.GT.0.G1) PHI = PHIL ¢ 0.1%PP1
J1 = 27

GO TO 144

111 = PHI-PHIL

KK4 = 8

PHI = PHIL

yvi(l) = vil])

‘0Pl = SQRT(ABSIP(28,28)))

VV(1) = vv(l) ¢ 0.1

IF(PPL.GT.0.1 ) VVI1)aVVL(1)+ 0.1#PPL
LKS = 1

KK2 = 2

KK6 = 3

11 =1

J1 = 26

GO TO 144

2zl = vvil)=vvl(l)

K4 = 9

vvil) = vvitl)

Vv 2) = vi2)

PPL = SQRY(ABSIP(29,29)))

vV(2) = vVv(2) + 0.1

IF(PPL.GT.0.1 ) VV(2)=VV1(2}¢ 0.1%PPL
11 =2

Ji = 28

GO TO l44

2l = VV(2)-vVvl(2)

KK4 = 10

vv(2) = vvii2)

vVl (3) = VV(3)

PPl = SQRTIABS(P(30,430)})

VV(3) = VV{3) + 0.1

IF(PP1.GT.0.1 ) VV{3)=VV1(3)+ 0.1%PP1
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CARD
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
239
300
301
302
303
304
305
306
3017
308
309
310
211
312
313
3%
315
316
317
318
319
320
321
322
323
324

52

53

54

92

55

93

11 =3

J1 = 29

GO TO 144

Il = VV(3)-yVl(3)

KKe = 11

VVli4) = VV(4)

vV(3) = VVi{3)

PPl = SQRT(ABS(P{(31,31}))
VV(4) = VV(4) ¢+ 0.1
IF(PPL.GT .04l } VW (4)xVVLi(4l¢ O,18PP]
11 = 4

JL ¢ 30

50 TO 144

ILL1 = VV(4)-VV1(4)

KKé = 12

PBL = P8

VV(4) = VVit4)

PPl = SQRT(ABS(P(22,22)})
PB = PB + 0,01
IF(PPL.GT.0.,01} PB = PBl + 0.1%PP)
KKGé = &

WFl = WF

WF = PB*RTD

Jl = 31

50 TO l4a4

111 = PB-PB)

A2122,22) = (DPBL-DPBI/LZ]
A2¢(23,22) = (0QB1-DQB)/IZ1
A2(24,22) = (DRB1-DRB}/ZZ1
1F(LAUNCH.GY ,2} GO TO 92
A2(17,22) = (DVEL-DVE}/111
A2(18,22) = (DWEL-DWE)/Z11 .
KKé = 13

Q81 = Q8

P8 = P8l

HF = WF1

WAl = WQ

PPl = SQRT(ABS{P(23+23)))
Jd8 = QB + 0.01
IF(PP1.GT.0.01) Q8 = QBl ¢ 0.1%PPl
WQ = QB*RTD

50 TQ 355

1l = A6 - Q8L

A2(23,23) = (DQBL-DQB)/ 111
A2(24423) = (DRBL-DRB}I/221
IF(LAUNCH.GT,2) GO TO 93
A2(17,23) = (DVR1=-DVEW 221
A2(18,23) = (DWELl-DWE)/2ZL
KK4 = 14

RBlL = RB

W/ = Q61

WQ = WQl

WR1 = WR

PPl = SQRT(ABS(P(24424)))
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A0
325
326
3217
328
123
330
331
332
333
334
335
336
337
338
339
340
241
342
343
34
345
346
347
A48
369
350
351
352
353
354
355
356
357
356
359
360
361
362
363
364
365
366
367
3068

56

22

10

40

90
57
95

97
96
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Rb = R8 ¢ 0,01

IF(PPL.GT.0.0l) RB = RB1 + O,1lePP]
WR = RBSRTO

GO TO 355

Il = RB ~ RB1

A2(23,24) = (DQBL-DQB)/Z11

A2(24y24) = (DRBL1-DRBI/IZ1
TF{LAUNCH.GT.2) GO TO 94

A2(1Ty24) = (DVEL1-DVE}/ 221

A2(18,24) = (DWEL-DWE)/2Z1

RB = RB1

KR = WR1

KKl = 1

KK3 =0

KK5 = 0

{K6 = 5

GO TO 355

DUEL = BCSECS(L +1)%BACS(1)+BCSECS(1,2)*BACS (2)¢BCSECS(1y3)%BACS(3)
DVELl = BCSECS(2,1)%B8ACS(1)+3CSECSL{2,2)¢BACS{2) +BCSECS(Z,3)8BACS(3)
OWEL = BCSECSt3 ,1)%BACS{1)+BCSECS(3,2)%BACS(2) +BCSECS(3,3)9BALS(3)
1+6

GO TO (10440)+¢Jd

YMATH = FTHZSYTCG-FTHYSLTCG

XRYYH = ZTCGOFTHX¢XTCGSFTHL

XMLTH & <YTCGePTHX-XTCG*FTHY

XMX 3 XMXA¢XMXTH

XMY ® XMYA¢FLASROCGH XNYTH

XML s XMIA=FYASROCGOXMNITH

TMPL = {1,~XIX/XIY)SPB

DPBY = XMX/XIX

0081 = XMY/XI1Y+TMPlSRE

0381 = XML/X1Y=-THPL#QB

GO TO0{9C+90+91)LAUNCH

CALL MDERlV

GO TO (641441451461 4T7148049950051 52953154455 450) ;KK&
1F{LAUNCH.GT «2)} GO TO 95

30 T0 96

IF(KO<,EQ.L) GO TO 96

KOK = |

00 97 1=17,18

D0 97 11=22,24

A2LT411) = 3.0

RE TURN

END
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SUBROUT INE MDERIV

COMMON /TIMES/T +0T,TBU,TSTOPs IPRy 3+ LAUNCH

COMMON /MSINCG/ ST yWOsWF ¢ XI X0y XI YO 4RLCGO sRDCGO sROCGP 4 XMoXIX ¢ X1Y,
1RLCGyRDCG

COMMON /FCEMOM/FXAs FYAgFZA o XMXA 9XMY Ao XMZAyFTHX FTHY, FTHZ
COMMON /STATEV/NTUE,VE +WE ¢ X¢Y3ZoDUE ¢DVE OWE ,0X 4 OY, D2
COMMCl /TRANSF/ BCSECS{3,43),ECSBCS{3,3),BCSGCS(3,3),ECSGCS(3,3)
CONRON /BLOCC1/DUEL 4OVEL »OWEL 4DPB1,0QB1 4 DRFL

DOUBLE PRECISION T,0T

DIMENSION BACC(3)

EQUIVALENCE (DVB+BACC(2)),(DHByBACC(3))

GO T0(30,50), LAUNCH

RLCGLl = RLCG

RLCGL = RLCGO + ROCG

CALL TRANS(ECSBCSsDUELsBACC)

THPL = RLCGL/XIY

TMP2 = XM*RLCGL

THP3 = TNPL*TMP2 + 1.0

FL¢ = (DRBLSTMP2-0VB*XM) /THP3

FLL = =(DQB1*TMP2 + OWB*XM)/TMP3

OvVa = OVB + FLY/XM

OWB = DW3 ¢ FLZ/XM

0P81 = 0.0

DOB1 = DQBL + FLZ*TMPL

DRY1 = DRBL-FLY*THP1

CALL TRANS{BCSECS,BACC,DUEL}

RETURN

CALL TRAVS(ECSBCS,DUE148AZC)

Bve = 0.0

oW = 0.0

OPBl = 0.0

Q81 = 0.0

DRE1l = 0.0

CALL TRANS(BCSECS+BACC,DUEL)

RETURN

END
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SUBROUTINE COVAR

COMMON /VMG/ H,MS

COMMON /VMG3/CINSTL +CONST2

COMMON /8L3CK1/P(33,33),0P(33+33),0P9(33,33)

COMMON /78LOCK2/ A2(33,33}sKIKsKIUNTHKICKKAT,82(21 K400
COMMON /SNSE/ AREA(31),EIZNOIS+EYNOLS

COMMON /VANEK /VGAIN,VLIM,VRLIM

COMMON /TIMES/T +0OTTBC,TSTOPy IPRyJ¢ LAUNCH

DOUBLE PRECISION T,0T

DIMENSION A3(15),P3(15)

D0 25 1=14MS

‘00 25 JJ=1,t

PLIJeI) = P(1,JJ)

00 201 I=1,15

A3(1) = 0.0

P3(I} = 0.0

00 1 Il=1,MS

DP{LsIT) = A2(L,1)%P(1,113¢A2(2,2)8P(2,11)#A2(1,3)%P(3,:1)
0P(4411) = A2(e44)%P (4o JT1D4A2(4,5)%P (5, I1)+A2(4:6)8P(6,11)
DD 4 JI=1.MS

DP(2,J1) = A2(2,1)1%P(1,J1)

DP(3,J1) = A2(3,2)%P(2,31)

DP(Ss 1) = A2{5,4)%P(4,J])

DP{6+J1) = A2(645)%P(5,J1)

OP(Tedl) = A0y T)PLT JIICA2(T 8)8P(B,JI)+A2(T,26)9P(26441)
DP(8,J1) = A2(8,T7)*P(7,41) )

DPU{GsJI) = A2(997)%P(T,J1) ¢ A2(9,8)8P(8,J1)¢A2(9,26)%P (26441}

0P(11431) = A2(11,10)%P(10,J1)

DP(14,41) = A2(14+13)%P(13,J1)

D09 1 = 1041242

D0 9 JI = 14MS

OP(I,JT) = A2(1,2)%P{2,JT)+A2(1,3)8P(3,JI)¢A2(1,5)8P(5,J1)¢A2(1+6)
16P( 69T 1 +A2(T1410)8P (100J1)4A2(T,10)%P(11,J1)¢A2(1,23)2P(23,J1)¢
202019 24)8P (24401}

D0 10 I=1341542

00 10 JI=1,MS

OPLIsJI) = A2(192)%P(2,J1)¢A2(1,3)¢P(3,J1)¢A(1,5)8P(5,J1)¢A21146)
16PL6JT)+A2(T413)%P (13, 01)+A2(1014)8P (14 J1)+A2(1,23)%P(2344])
2¢A2(1,24)%P(244J1)

JL = 16
JM = 18
KIT = 0

DO 11 I=JL,JM

DO 12 JK=1,3

A30JK) = A2(14+JKe15)
A3(4) = A2(1,21)

00 13 JK=5,11

A30EK) = A2{1,JK+20)
D0 11 II=1,MS

00 14 JK=1,3

P3{JK) = PLIK+15,11}
P3(4) = P(21,11)

00 15 JK=5,11

P3{JK) = P(JK®20,11)
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CARD
55
56
57
58
59
60
ol
62
63
64

56
67
. o8
69
10
71

73
T4
75
76
17
138
79
80
81
82
33
34

e e 4t e

d45
¥5
87
88

90
31
92
93
Ga
¥5
96
97
98
39
100
101
102
103
104
105
106
107
108
109
110
111
112
113

11

16
18

19

26
20

21

27

23

82

81

99

161

OP(1,11) = 0.

90 11 JK=l,11

OPUI,I1) = DP(I,I1) ¢ A3(JK)*P3(JK)

IF(KIT.EQ.1) GO TO 16

KIT = 1

L= 22

JM = 24

30 10 17

DO 18 1=1,MS

DP(22,1) = DP(22,1)+A2(22422)%°(22+1)

D0 19 JK=23,24 .

00 19 I=1,MS .

DP(JKs 1) = DO(JKy 1) +A20 K220 9P (22, 1)4A2(JCs 230 9P (22, D4R 2 IKy24)
18P ( 2441)

11 = 16

D0 20 JK=19 421

DO 26 1=1,MS

DP(JIKs I} = A2(JK, I1)#P(11,1)

11=11¢1

CONTINUE

00 21 JK=25427

00 21 1s1,MS

DPLJK 1) = A20JK,23)9P( 23,1 J¢A2(JK124) P26 41) +A2(JK,2618P(26+1)
DP{2641% = DP126,1)+A2(26422)%P (22, 1)+A2(26425)#P(25+1)
09(27,; = DPL27,0) + A2(27,25)8P(25,1)

JL= 28

J1 = 12

00 23 JK=28431

IFIJK.EQ.30)01=12

00 27 1=1,45

DP(IKs 1) = A2(JK,TI#PIToTI+A(IK B) P (8410 ¢A2(IK,IVEP(94]) +
LAZI1K 261 %P (269 1) ¢A2(JKsJTI#P (ST, 1) oA20JK, JLISPLIL, 1)

L v JLel

1 = J1+3

CONTINUE

TF(LAUNCH.6T.2)GO TO 81

00 82 JK=17418

00 82 =1,MS .
DO(JKsT1=DPLIK T 1+A2(IK122) KPL221) ¢A2(JKs23)EP(23,1) ¢A2(JK24)%
1P (244 1)

00 99 1I=1,HS

DD 99 JJ=1,M$

0P (JJ, 11} = DP(IEJJ)

00 24 1I=14MS

00 24 44=1,11

DPLITIJd) =OP(L1,J)4DPI(TT,dd)

OP{1,1) = D°(1,1) + EZNOIS#*82(1)#82(1)

DP{4y4) = DPU4s4) + EYNOIS®B2(2)#B2(2)

0P(28928) = DP(28,28) + VGAINSVGAIN#%0.25
DP{29,29) = DP{29,29) + VGAIN®VGAIN®0,.25
OP(30928) = DP{ 30,28} + VGAIN®*VGAIN®*(Q.25
DP(30430) = DP(30430) + VGAIN*VGAIN®0,.25
0P 31429) = DP(31+429) ¢ VGAIN®*VGAIN®0.25
OP{31+31) = DP(31,31) ¢ VGAIM®VGAIN®0,25
DP(32,32}) = EINOIS

DP(33,+32) = 0.0

0P(33,33) = EYNOTIS

RETURN

END
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X CARD .
k. 1 SUBROUTINE SEEKER :
X 2 COMMON / SEEKR/NSBTHTG+BPSIG.BY4D,BPSD4EZ,EY40SVV(6) :
: 3 COMMON /7 SEEKKY SKSP ¢SKSY 4TS AMP, OTSAMP, CROSPT, CROSTP »SYGBIS,52681S
s 4 COMMON /TINES/T0OT,TBOsTSTOP+IPRyJ9LAUNCH ;
; 5 COMMON / INCEPT/UT(3)oXT(3}y TMVEL 4 TMRNGE yBEPSZ 4 BEPSY .
- 6 COMMON /ROTATE/NR«PByQBoRBy THETAPHI4PS1,0P B, 0QByDRByDTHA, DPHI, .
s 7 10PST s SNTHAsCSTHA ¢ SNPHT ¢CSPHI ¢ SNPSI s CSPST ¢ WPy WQ s WRy BTHET Ay BPH, BPS :
2 8 COMMON /JTILTY/ G4RTD .
ke 9 COMMON /SNSEZ AREAU31) EINOES,EYNOIS VBEPS,VBEPSZyVBEPSY 4
: 12 COMMON /VNG9/JUNK VTINEL,VTIMNE2 s VNOT SO y NUMM, NOMNAL i
5 11 DOUBLE PRECISION T,DT .
3 12 "ENTRY INSEEK i
3 13 1 = IDINT({T*1.03+.500) !
) 14 T = MOD(1,50)
& 15 IFU1.NELQ) RETURN -
> 15 TMP1 = TMRNGE/32810. s
17 TMPL = ,75%TMPLeTMPL 4
18 EZ = DEAD(=-THP1,TMP1l, BEPSZ)*SKSP 3
19 C *XXEXTEE SRR RN SR NS E 7
E 20 TF(NOMNAL.EQ.01GO TO 1 "
. 21 IFC({TJLELVTIMEL ) OR (( T.GE.,VTIME2))30 TO 1 i
: 22 VBEPS = VBEPSZ 4
3 23 CALL SNOISE(TMP1,8EPSL,EL,EZNOIS) :
3 24 1 EY = DEAD(-TMP1,TMP1,BEPSY)*SKSY C
p 25 C SS5Esxkst EEREEEREE
26 1F(NOMNAL.EQ.0)GO TO 2 S
27 TF({TJLE.NTINEL).ORL{T.GE.VTINZ2))50 TO 2 A
k 28 VBEPS = VBEPSY B
z 29 < CALL SNOISE(TMP1,BEPSY+EY4EYNOLS) Do
A 30 2 BYHTG = BTHTG + OTSAMP#EL i
- i 3l BPSIG = BPSIG + DTS AMP*EY .
3 H 32 RETURN 3
8 : 33 END K
3 [ 3
3 ! H
i 3
2 1 4
2 ! £
+ $
j } CARD A
- , 5 ¢ FUNCTION OEAD(P1,P2,X) i
3 3 ¢ DEAD SPACE 4
A 4 C H
4 5 DEAD =0.0 N
- 6 IF(XeGTePLl. ANDW Xo LT «P2}RETURN :
: 1 DEAD = SIGN(1.0,X) i
4 8 RETURN i
I 9 END :
; ;
P 3
% .
3 §
; .
2 ,
A {
! s
4 :
; i
3
3 1
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SUBRUUTINE SNOISE(TMPLl,BEPS,ECySGSQ)

COMAON / SEEKK/SKSP ySKSYsTSAMP,DTSAMP .CROSPT 4CROSFPSYGBIS,SZGBIS
COMMON /UTILTY/G+RTO

COMMON /STATEV/NTUEWVE'WEWX(3)

COMMON /3LOCK1/P{33,433),0P¢33,33)

COMMON /T IMES/T

COMMON /SNSE/ AREA(31),EINOIS,EYNOLIS,VBEPS

COMMON /VMG/JUNK,VTIMEL,VTIME2,VNOISD

00JBLE PRECISION T

SGTMP1 = (0.75/(32810.%32810,))*SQRT(10.0%P (19, 9)*X(1)*xX(L]
143,0%P(19419)#2 (19, 19)1+10.0¢P{20,20) X 2) ¥ X(2)

243,0%P(20420)8P(20420) +10.0%Pt21,21)¢X({3]2X(3)

3¢3,0%P(21,21)%P(21,21) + 2.0¢P(19,19)*P(20,20)
L4+2.,0%P{19,19)*P(21,21) ¢+ 2.,0%P(20,20)8P(21,21) +4,0E8%P(19,19}
5-8.0E4¢P(19,19) %X (1))

SIGBEP = SQRT(VNOIISO®VNCISD/¢RTOSRYD)I¢+SGTUPYS SGTMPLOVBEPS*VBEPS)

IFLEC.NE,~SKSP) GO TO 21

DISYT = -TMPl -~ BEPS

POS = DISY/SIGBEP

CALL OETARA (POS,AL1)

AL »~ ALl+ 0.5

POS = POS + 2,0%TMP1/SIGBEP

CALL DETARA (POS,A01)

A0 = AOL - ALl

AU = 1,0 = AL ~ AC

30 10 41

IF{ £EC NE.D.0) G0 TO 22

DIST = BEPS ¢ TNMP)

POS = DIST/SIGBEP

CALL DETARA (P0S,AO1)

AL = 0.5 ~ AO1

POS =(TMPL =~ BEPS)/SIGBEP

CALL DETARA (PDS,A02)

AU = 0,5 = AQ2

AQ = AQLl + AQ2

GO TO 41

DIST = BEPS - TMPL

PDS = DIST/SIGBEP

CALL DETARA (P0S,AUL)

AU = AUL+ 0.5

POS = POS ¢ 2.,0%TMPL/SIGBEP

CALL DETARA(PQOS,AOlL)

AQ = AQl ~ AUl

AL = 1.0 - AU -~ AO

SIGEC = AL#(=-SKSP) ¢ AU*SKSP

SGSEC = (AU+AL)*SKSP*SKSP

SGSQ = SGSEC - SIGEC*SIGE?

WRITE(6,41)

FORMAT(LXy ' TIME® yT21 o9SIGEEPY T35, ECY oTSL ¢ ALY 4 THH A Y,T8 1,
LYAU*¢T96y *SIGEC?,TLL1,*S682/)

WRITE(6 422 ToSIGBEPECoAL: Ay AUy SIGEC,SGSQ

FORMAT( 1X48E15.5)

WRITE(6,3)0P(1y1),0P(4y4)yBEPS

FORMAT(LXs'OP{Ll41) = *,EL15.54'0P(444) = *,EL5.5,'BEPS = 1,EL5,5)

RETURN

END

22 gt ransen

an A

R

A S PN AN e s

TR TR PN

7ol -, .,
E«\m.ﬂvuh R P I S S N R e Y

Pk Al 1 byt AT




ARRONE

T

o

.“ -

A 3

-
QAN Stk py o

Kyervg s SO TT AT

pE et

R

et b e e e e

[

©
>
g Pod
OC@uC NSEWN~O

-
N =

13

- g
[ )

23

24
25

SUBROUTINE DETARA (PQOSyAAA)

COMMON /SNSE/ AREAf31),EINOIS,EYNDIS
111 =0

00 23 I=1,30

AAl = (1~1)/10,0

AA2 = 0.1 + AAL

111 = 111 + 1
IF(POS.GT.AAL.AND.POS.LE.AA2)30 TO 24
CONT INVE

111 = 31

CORRCT = 0.0

60 TO 25

CORRCT = 10.0¢(POS~AALIS(AREA(IIL)I~AREA(IT14+1))
AAA = 0,5-AREA(IILl} + CORRIT

RETURN

END
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CARD

i SUBROUTINE VANEMD
2 C *xx
3 C THI S ROUTINE EVALUATES DERIVATIVES FOR INTEGRAT ION VARIABLES
4 C USED IN THE VANES MODULE.
5 C 3%
6 COMMON /7 AUTOP/NAIPL ¢2ZP2+42P3¢2Y1+2Y292Y34ZR192R2:3PH]IS 2P1L,2P 12,
4 LEODCRZYI1y2ZYI20EVNCRZPD1¢ZPD2+2PD3¢92YD1,2YD2,2YD342RDL42ZRD2,
8 28PHISDyZP1D1,2P102, EODCRDy ZYIDY+ ZYID2¢ EVNCRDy EZSSyEYSS+WQC ¢ WRC
9 3ELRRHEYRR+BDELPC

10 COMMON /VANES/NVsVV(4),0VV(4),DEL(3)

11 COMMON /VANEK/VGAIN,VLIM,VRLIN

12 COMMON /3LOCK&/ VVS(4)4DLYC(4}

13 COMMON /8LIK2/ AVD(4),BV0(4)

14 SOMMON /MBLOK1/ KOUNT1 ¢ XNORM (4 ) .

15 DLTC({ 1) = EQDCR/+BDELPC ¢XNURM(11}&0,5

16 DLTC(2) = EVNCR+BDELPC + XNORM{(2)*0.5

17 OLTC(3) = EODCR-BDELPC +XNORM(1)%*3,.5

18 DLTC(4) = EVNCR-BDELPC + XNORM(2)}#*0.5

19 00 30 I=l+%

20 VV5L1) = vv(I)

21 IND = 1

22 IFLABS(VII))oLE.VLINICO TO 10O

23 IND = 2

24 VV{ll= XLIMIT(VV(I),VLIM)}

25 10 DVV(I) = XLIMITUVGAIN®(DLTC(I)=VV(I})},VRLINM}

26 GO T0(30,20),IND

27 AVO(1) = OVVI(I)

28 BVD(I) = DVV(I)=VV(l}

29 20 {F(OVVIII*VV(])eGT04}DVV(]}=0,

30 30 CONTINUE

31 TMP1 = Vv({l)+vvi2)

32 TNPZ =VV(3)eVV(4)

33 DEL{L) = 0.25%{ TMPL¢TMP2)

34 DEL(3) = 0.25%(TMP2~-TMPL)}

35 DEL(2) = 0,25¢{VVI2)¢VV(4}=-VVIL1}=VVI(3]))}

36 RETURN

37 END
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SUBROUTINE TARGET

THIS ROUTINE CALCULATES TARGET/MISSILE RELATIVE POSITION AND
SPEED AND GENERATES LINE-OF~SIGHT SIGNALS IN SEEKER PLATFORM
CCORDINATES

COMMON
COMMON
COMMON
COMMON
COMMON

~COMMON

COMMON
COMMON
COHMON
COMMON

/ SEEKR / NS,VS{2),0VS(2),05V(8)

/STATEV/NTUE(3), X{3),DUE(3},0X(3)

/ INCEPT/ UT(3)yXT(3)+sTHMVELy TMRNGE,BEPSZ ¢ BEPSY
/TRANSF/BCSECS{343) 4ECSBCS(3+3),BCSGCS(3,3),ECSGCS(3,3)
JUTILTY2G.RTD

/TINES/T

/SNSE/ AREA(31),EZNOIS+ZYNOI SoVBEPSyVBEPSZVBEPSY
/BLOCKL1/P(33+33),0P(33,33)

/7UBLOK1/KOUNTL ¢ XNORM(4 )

JYNG9/JUNK ¢ VTTME Lo VTI ME2 ¢ YNOI SOy NUMM s NOMNAL

OIMENSION RMP{3),SMP(3},TMP(3)

DOUBLE

PRECISION ¥

EQUIVALENCE (RXBAyRMP{1))s(RYBA,RM?>(2)) ,(R2BARMP(3))
EQUIVALENCE (RXGsSMP(1) )¢ (RYGySMP(2)), (RZGy SHP(3))
A= 0.0

8 = 0.0
C = 0.0

00 10 I=1,3

SMP(T)
THP(T)
RMP (1)

= YT (1)=UE(])
= XT(L)=X(1)
= TMP({I}=-SMP(1)

A = A+TMP(1)*TMP(])
B = B+SMP(])eSMP(])

THRNGE

= SQRT(A)

TMVEL = SQRT(B)

COSA =0,

00 20 I=1,3

A = TMP(I)/TMRNGE

B =SMP{1)/TMVEL

COSA = COSA+A*3

TMVEL = COSA®TMVEL

A = VS(1)}/RTD

CSTHG = COS(A)

SNTHG = SIN(A)

A = VS{2)}/RTD

CSPSG = COS(A)

SNPSG = SIN(A)

A= TMP(L)*CSTHG-TMP{ 3)#SNTHG

RXG = ASCSPSG4TMP(2)#SNPSG

RYG = TMP(2)}#CSPSG = A*SNPSG

RIG = TMP(3)%CSTHG + TMP(1)*SNTAS

BEPSZ = ATAN(=RIG/RXG) +XNORM(3)*VNOISD/RTD
BEPSY = ATAN(RYG/RXG) #XNORM{4)¢VNOISD/RTD

C SERXBERREEAEAKEREEES

1F(NOMNAL.EQ.0)GO TO 1
IF({T.LE.VTIMEL).OR. (T.GE.VTINE2))GD TO }

C S#ILEBAXEETESEREREE S
0 = (l.+{~RZG/RXG)* [~RZG/RXG))>*2
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55
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€ = (l.¢{ RYG/RXGi®t RYG/RXG))**2

F = AXGe*4

H = 1,0/(D%F}

1l= 1. 0/(E*F)

Q s (~TY2 (1) *SNTHG-TMP(3)#CSTHG) *CSP SG

QL = (RXG*(TMP(3)*SNTHG-TMP (1) *CSTHG)+RZG*Q)/RTD

A2 = RXGESNTHG-RIG*C STHG®CSPSG

Q3 = =RIG*SNPSG

Q64 = RXGFCSTHGHRIG*SNTHG®CSPSG

35 =RIG*(-A *SNPSG+TMP(2)#CSPSG) /RTD

Ry = (RXG®(TMP{1)*SNTHGTMP (3)&CSTHG)ISSNPSG=-RY5#Q) /RTD
R2 = RXG¥CSTHG* SNPSG+RYGPCSTHG*CSPSG

R3 s =RXG*C SPSGIRYG®SNP SG

R ==RXGXSNTHGRSNPSG=RYG*SNTHG®CSPSG

25 =(RXG* {(~TMP(2) #SNPSG-A*CSPSGI-RYGE(~ASSNPSGHTMP (2)#CSPSG)I/RTD
VBEPSZ = H*(Ql*Ql*P(32,32)¢Q2%22%P(19,19)+Q3¢Q34P(20,20)
LeQe®Qa®P(21,421) +Q5%G5%P(33,331¢2.0%QL*Q2%P(32419)
2¢2.0%Q1#Q3%P(32,20) ¢2,0#Q2¢Q4%P(21+419)#2,0%Q2¢Q58P (33,419}
3+2,0%Q34QA*P(21/20)+2,08Q3%Q54P (33 20014 2,0%Q4%Q56P(33,2]1)¢
42,0%Q18Q5%P (33,432)+2,0%Q2*Q3%7120419)+#2.0%QLeQ42P(232,21)}
VBEPSY =HL1®({R1#R18P(32,32)+R2%R26P(19919)+F.30R3%P(20,20)
L+Re®RG*P(21 421 ) +R5*R5%P (33,433)+2.0%R1*R2%P(32/19)
202,01 *¥R3*P(32,20) ¢ 2,06R2€ R4*P (21119 )42, 0*R2*#R5%P(33,419)
342, 0%R3%P4%P (21, 20) +2,0%R3SR5%P (334 200+ 2, O*¥RA*R5¢P(33,21) ¢+
42.0%R1*R5¢P(33,32)+2,0%R2#RI*P(20419)¢2.0%R 1*R4*P (32,211})
RETURN

ENTRY INTGV

VSUL) = ATANC(X(31=-XT(3)})/XT(1))*RTD

vVS§(2) = 0.

RETURN

END
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SUBROUTINE ROVATM
C o8¢
(o4 THIS ROUINE CALCULATES “cRIVATIVES FOR YHE MISSILE ROTATIONAL
(= VARIABLES PB+0B¢RB AN, THE EULER ANGLES THETA, PHI, PSI.
C oo
COMMON /POTATE/NR,PB,QBsRBy THETA4PHI 4PS1,DF8 2008 yORB yDTHA »DPHI
1,3PS1 4 SNTHA,CSTHASSNPHI » CSPHI¢SNPSI+CSPSI¢#2:d3494R,BTHETA,BPH,58PS
COMMON /TINES/T,DT,TBO,TSTOP+IPRyJ+LAUNCH
DOUBLE PRECISION T,07
COMMON /HSINCG/ST+WOsNFoXIXO¢XIY0OsRLCGO 4RDCGO+RDEGP ¢ XMy XTI X X1V,
1RLCG4ROCG
"CORMON /FCEMOK/ FXAs FYA FZA s XMXA o XKY Ay XM ZAoFTHXy FTHY o F THZ
COMMON /STATEV/NTsUE o VE /HE4X Y 32 +OUE«DVE DA Ey DX DY, D2
COMHON JUTILTY/G4RTD
CONMON /GEOMK/S ¢D9XTCG1YTCGy ZTCGsRLL9RL 24 KUEs WYE ¢ WWE
SOMMON /TRANSF/BCSECS(393)4ECSBCS(3,43),BCSGCS(3,433,ECSGLS(3,3)
DIMENSTON BACC(3?
EQUI VALENCE (DVB.BACCI2)),(DHB, BACCI3))

C s*& MOMENTS OUE TO THRUST MISALIGNMENT

GO TO (10+40) ¢4

10 XMXTH = FTHZ®YTCG-FTHYSLTCG
XMYTH = ZTCG*FTHX+XTCG*FTHZ
XHZTH = -YTCG*F THX~XTCGSFTHY

C ¢s* TOTAL APPLIED MCMENTS

W AMX = XHXA+#XMXTH
XHY = XMYA+FZASRDCG#XMYTH
XML = XMZA-FYA®RDCG+XNZTH

C #** DERIVATIVES

THPL = (l.-XIX/X1Y)*PB
t1P3 = XMX/XIX

OUB = XMY/XIY+TMP1%RS
DRB = XMI/XIY~THPL*QB
DTHA = QB*CSPHI-RB* SNPHI
DPSY = (RB*CSPHI+QB4SNPHII/CSTHA
0P41 = PB+OPST® SNTHA

wP PB*TD

YQ = QB8*RTD

WR RB&RTD

B8Pd = PHISRTD

¢vx MO)IFY DERIVAT!VES WHEN LAUNCHER OYNAHICS ARE IN EFFECT

GJ TO (50430420 LAUNCH
RETURN

RLCG = PLCGO+RNCG

CALL TRANS(ECSBCS,DUE,BACC)
TMP 1= RLCGIXTY

TMP2 = XM®RLCG
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THP3 = THPLOTMP2¢],

FLY = (QRBETMP2-DVBEXM)}/TMP3
FLZ = -{JQB&TNP2¢DWB*XNH) /THP3
OV3s ODVB#FLY/ XK

OWB = DWB¢FLI/XM

0P3 =0.

0QB = DQB¢FLI*THP)

DR3 = DRB=-FLYSTNMPL

CALL TRANS(BCSECS,BACC.DUE)
RETURN

CALL TRANS(ECSSCS,DUEBALC)

‘OVe = 0.

OWd =0,

0PB =0,

0Q3 =0.

DR8 = 0.
CALL TRANS(BCSECSyBACC,DUE)
RETURN

EWTRY ROTZER
XMXTH- =0,
XMYTH = O,
XMZTH =0,
RETURN

END

SUSROUTIRE TRANS{TMTX,VECTOR,RESULT)
DIMENSTON THTX(343),VECTOR(I)RESWT(I)
RESULT(L) = THMTXU{1+1)®VECTOR(L)STHTX(192)®VECTORI2) 6THTX(1y3)e

IVECTOR(3)
RESULT(2) = TMTX{29L)#VECTOR{L1)+TNTX(2y 2)SVECTOR(2) ¢+THTX( 2,3}

LVECTOR(3)

RESULT(3) = TMTX(3+1)®VECTOR( 1) ¢THTX(3y2) *VECTOR(2)+TMTX(3 3]

LVECTOR(3)
RETURN
END
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SUBROUTINE TRANSHM

THIS ROUVINE CALCULATES DERIVATIVES FOX THE TRANSLATIONAL
EQUATIONS OF MISSILE MOTION, INCLUDING LAUNCHER OYNAMICS WHEN
APPROPRIATE.

COMMON /STATEV/NTyUEWVEIWEsX9Y s ZyOUE+DVE,DRE, DX DY, D2

CUMMON /ROTATE/NR+PB QB ¢RBy THETA, PHI ,PST,0PB,0Q8,0RB, 0T HA, DPHI
1,0P51,SNIHA,CSTHA;SNPHI CSPHI s SNPSI sCSP ST yWF 4 WQ +WR¢BTHETA 48PHBPS
COMMON /GEOMK/S 909 XTCGr YTCG,2ZTCGyRLLJRL2yWUEINVE,MHWE

COMMON /M SINCG/ ST oWO WP 3 XI X0 XI YQeRLCGO ¢RDCGO ¢RDCGP ¢ XMy XIX 9 X1V
1RLCG+ROCG

COMMON /FCEMOM/FXAsFYAsFZA ¢ XMXA oXMYAsXMZAFTHX, FTRY s FTHZ
COMMON /TRANSF/BCSECS{393)¢ECSICS(343) yBCSGCS{343) 4ECSGCS(343)
COMMON /8L0(nr6/ BACS(3)

COMMOR /COEFS/THR,AERC(18}

COMNON JUTILTY/G,RTD

CONMON / BLOCKT/KX3 ,THRP,TINP

COMMON /3LOCKB/KK1 1KK54 VP

DIMENSION ANGLS(6)

EQUI VALENCE (ANGLS(1),P8)

CALCULATE EULER TRIGONOMETRICAL TERMS

IF(KK1.EQ.0)GO TO 20
SNTHA = SIN(THETA)
CSTHA = COS{THETA)
SNPHI = SIN(PHIN
CSPHI = COS{PHI}
SNPSI = SIN(PSI)
CSPSI = coStpst)

CALCULATE BODY/EARTH AND EARTH/BODY TRANSFOURMAT ION MATRICES

TMPL = SNPHI®SNTHA

TMP2 = LSPHI*SNTHA

BCSECS(ly1) = CSPSI*CSTHA
BCSECS(241) = SNPSI#CSTHA
BCSECS(341) ==SNTHA

BCSECS(1y2)= CSPSI&TMPL~SNPST*CSPH]
BCSECS(2+2) = SNPSI*TMPL ¢CSPSI*CSPH]
BCSECS(3,2)= CSTHA®SNPHI
BCSECS(1,43)= CSPSISTMP2+SNPST#SNPH]
BCSECS(243) = SNPSI*THP2-CSPST#SNPHI
BCSECS(3y3)= CSTHA*CSPHI

D0 15 [=i,]

20 15 K=1,3

ECSHCS(I,K)= BCSECS(Kye1)

CALCULATE AERUDYNAMIC FORCES AND MOMENTS
CALL AERUDY
CALCULATE THRUST COMPONENTS

e
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L 22

m

FTHX = THR$COSAT
FTHY = TYR®SATPHI
FTHL = THR3SATCPH

CALCULATE BODY ACCELERATIONS EXCLUDING GRAVITY

BACS(L) = (FTHX-FXA)/XM
BACS(2) = (FTHY#FYA)/XM
BACS(3) = (FTHLZ4FLA)/XM
IFIKK3. NE. O)RETURN

TRANSFORM BOOY ACCELERATIONS TO ECS AND CALCULATE DEIVATIVES

CALL TRANS(BCSECS+BACS,DUE)
OWE = DWE+G

0X = UE

OY = VE

Dl = WE

RETURN

ENTRY INTRAN

CALCULATE THRUST ANGLES AS SINES AND COSINES

TMPL = SQRTUIXTCO*XTCG+YTCI*YTCS¢ZTCG*2ZTCC)
COSAT = XTCG/TMPL

SATPHI = YTCG/TMPL

SATCPH = ZTCG/TMP)

CONVERT INITIAL VALUES TO RADIANS

D0 10 I=1+6

ANGLS(I) = ANGLS(1}/RTD
RETURN

END
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CARD

i SUBROUTINE AUTOPT

2 CIOMMON /7 AUTOP/NA 2ZPL o2P2 o IP3¢2Y¥1 0 21Y2+2Y342ZR1+2R2,BPHIS2P11,2P 12,

3 LEODCR¢ZYILoZYI24EVNCRy2ZPD 1o 2PD2,2PD3,2Y01+2Y02.2Y0D3,2R0L 4ZR0O2,

% 28PA1SD,2PIDL,2P1024 EQOCRDy ZY IDL 9 ZY 1029 EVNCRD+ EZSS+ EVSSoHQC 4 WRE

5 3EIRRHVEYRR 4BDELPC

6 CONMON /7 AUTOK/ WQGyDQGeTAUZ,TAUY,TAUL +GYZ ¢RALIRB2sWP1,DPLoRK],

7 1PYAK]1 4PYBK1 4PYIK] ¢WQl yOQL ¢+ PYLIMyRLIM,GBIAS,QBIASsRBIAS

8 COMMON /SEEKR/ NS,VS(2),0VS(2),0SV(8)

9 COMMON /RUTATE/NR,PB,QB,RB,THETA,PHIPSI,DPByDQB+ORByOTHA 4DPHI,
10 1OP ST s SNTHA sCSTHA « SNPHI ¢CSPHI ySNPSTyCSPS I WP W Qe WRy BTHET A, BPH, BPS
11 COMMON /BLIK1/BPHISM
12 EQUIVALENCE (EZ,0OSV(1)}y (EY,0SV(2))

13 C *ox LIMITATION OF INTEGRATORS®

14 EODCR = XLIMIT (EODCRyPYLIM}

15 EVNCR = XLIMIT(EVNCR,PYLINM)

16 C #%x GUIDANCE FILTER - PITCH

17 IPD1l = GYZ*EZ-TAUZ%{(3.%(ZP1+TAULSZP2) ) +TAUZ*TAUL*2P3)
18 IPD2 = ZP1

19 P03 = IP2

2 E2S> = TAUL*ZP3I+1P2

21 C ¢*% SUIDANCE FILTER =~ YAW

2 ZYDL = GYZSEY-TAUYS((3.%(2Y1+TAUYSIY2)) ¢TAUYETAUYSZY])
23 lYD2 = Ivl

24 YD - Y2

25 EYS - AUL *#1Y342Y2

26 AQC = _ISS+QBIAS+GBIAS

27 WRC = EYSS ¢ RBIAS

23 WQOIF = WQ ~WQC

29 ‘WRDIF = WR =HWRC

30 €IRR = WQDIF-WRDIF

i EYPR = WQDIF#WRODIF

32 C &35 ROLL COMPENSATICN

33 I271 = WPLl*(WPLI%(3PU~IR2)-2,%DP1¢ZR])

34 LRD2 = IR1

35 BPHISM = RK1® (ZR2+¢((RAl ¢RB2 )*ZR]1+ZR0ji )}/ RAL1/RO2)
Jo BPHISD = XLIMIT(BPHISM,RLIM)

37 BOELPC =0.1%{BPHIS + 10,0%BPHISD)

38 C ¢x* PITCH INTEGRATOR

39 IPIDLl = TNPT#EZRR - TMP2$ZPIl - TMPl®2PI2
%0 wPI02 = ZP11

41 EQDCRD = TMP3*%ZPI2+TMP4*ZPI1¢2P]D1

42 C **x YAd INTEGRATIR®

43 ZYIDL = TMPT*EYRR = TMP2¢1lY1l ~ TMPLl*2Y]2
44 lvYiD2 = IYI1

45 EVNCRD = TMP3%ZYI12¢TMP4*LIYI14#IYID1

46 RETURN

417 ENTRY INALPT

48 TMPL = WQLl*WQl

49 THRO2 = 2,+#0Q1#%WQl

30 TMP3 = PYAK1%PYBK]

51 TMP4 = PYAKL +PYBKL

52 THPS = WAG*WQAG

53 TMP6 = 2.*DQG*WQG

54 TMPT = PYIK1*WQl#WQL/TMP3

55 RETURM

56 END
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ey
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& | CA2p
% ; 1 SUBROUTINE AERQDY
b . 2 C %2
p ' 3 ¢ THIS ROUTINE EVALUATES AERODYNAKIC FORCES AND MOMENTS APPLIED TO
4 ¢ THE MISSILE, USING COEFFJCENTS AND DERIVATIVES CBTAINED BY TABLE
: ! 5 ¢ INTERPOLATION. FORCES AND MOMENTS ARE RETURNED IN COMMON BLOCK
3 { 6 C /FCEMOM/ «
i 7 C =%
2 i 8 COMMON /COEFS/THR,CMQyCNRyCNP¢CY2¢,CL34CX0+CMOZDCMyCNF 4CN2 o
: . 9 1CLP yCLZ »CXC 4 CNQy CMDQP o CLORP 4 CHR4CLD
3 ! 10 COMMON /ADDV/ALFAP¢ALFA,BETA,XMNoCSPHIP o SNPH Py QUE 4 VA RHO
- : 11 COMMON /STATEV/NT UEJVE WEs X9 Y929 DUE+DVE ;ONE +DX DY 02
! f 12 COMMON /TIMES/T,0T+TBO,TSTOPy [PRyJ,LAUNCH
3 13 COMMON 7ROTATE/NR yPB 40B R8¢ THETA 4 PAT 4 PST 4DPB, DQB DRBs OT HA, DPHI
ke | 16 1,0PST,SNIHAy CSTHA, SNPHL yCSPHI¢SNOST +CSP ST 4Py WQy WRy BTHETA,BPH,BPS
4 t5 COMMON /GEOMK/S 4Dy XTCGoYTCG ¢ ZTCGoRLL 4RL24RUE WV E4WHE
X ! 16 CO4MON /VANES/NV,VVD({ 8) yDELQ,DELR yDELP
a i? COMMON /FCEMOM/ FXA, FYA,FZA.xnxA.xnvA.xuza.rtux,Fruv.Fruz
4 18 CIMMON /TRANSF/BCSECS(343) +ECSBCS(343)9HCSGCS(343),ECSGCS(343)
9 19 COMMON /BLOCKSB/KK1,KKS, VP
5 ; 20 DOUBLE PRECISION T, OT
5 21 DIMENSION BVEL( 3) {DUM(3)
3 d 22 EQJIVALENCE (U8, BVEL(L)},(VByBVEL(2)),(WB,BVEL(3))
; ¢ 23 IF(KK5,EQ.1)1G0 T0 30
3 2 DUMI(1) = UE-WUE
3 25 DUM(2) = VE-WVE
3 26 DUM(3) = WE-WWE
27 CALL TRAVS{ECSBCS,DUM,BVEL)
28 BHO = 2.3738E-3+46.18445-8%]
2 29 VA = 1116.08¢3,6292E-3%2
2 ! 30 TMPL = VB*VB+Wi*WB
s , 31 VP = UBSUB+TMPL
32 TH?1 = SQRT(TMPL)
33 QUE = 0.5*RHO*VP
34 VP = SQRT(VP)
4 35 XMN=VP/VA
; 36 ALFA = ATANIWB/UB)
ar BETA = ATAN(VB/UB!
E 38 ALFAP = ATAN({TMPL/UB)
W 39 IF (THP1.E£Q.0.)1GO TO 40
4 49 CSPHIP = WB/TMPY
§ 4l SNPHIP = VB/TMPL
2 %2 GO T0 50
v 43 40 CSPHIP = 1,
E: 44 SNPHIP = 0,
45 50 CONT INUE
1 46 G0 TD (10,4200,
4T 10 CALL OTLUX]

GO 1O 30
49 20 CALL DTLUX2
30 SN2PHI = 2.*SNPHIP#CSPHIP
SN4PHI = 2,%SN2PHI*(C SPHIP~SNPHIP) & (CSPH] P+ SNPHIP)
SN2PHI = SN2PHI®SN2PHI
TMP L1 = DELR*CHR
TMP2 = DELQ®CMOQP
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55
56
57
58

60
61
62
63
64
65
56
67
63
59
70
71
72
73
T4
15
16
17
78
79
80
a1

TMP3 = TMPLSCSPHIP+TNP28SNPHIP
THP4 = THP2#CSPHIP~-THMPLSSNPHIP
TMP1 = CNPS#SN&PH]¢TMP3

THP2 = CMO®COCMOSN2PHI+TNP4

M = CSPHIPSTMP24+SNPHIPSTNPL
CN = CSPHIP&TMP 1=-SNPHIP*TMP2
CL = CL26SN4PHI ¢CL3I*SNPHIP+DELP*CLD
CXsCX0+CXC

TPl = DELR*CLORP

TMP2 = DELQ*CNQ

TMP3 = TMPLSCSPHIP+TMP2#SNPHIP

‘TMP4 = TMP2SCSPHIP-TMPLSSNPHIP

TMP1 = CY2¢SN4PHI¢TMP3

TMP2 = CNF¢CN2SSNZPHI +TNP4
CY = CSPHIPSTMPL-SNPHIPSTMP2
CZ = =CSPHIP®THP2~SNPHIP*TMPL
TMPL = QUESS

EXA = THPL1®CX

FYA = TMPL®CY

FIA = THP)8CL

THNPL = TMPL*D

TMP2 = 0.5¢D/VP

XMXA = TNPL®{CL#WPSTHP2¢CLP)
XMYAs TMPL® (CMeWQET MP22CNQ)
XMZA = TMPLS(CN+WR® TMP2#CNR)
RETURN

END
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SUBPOUTINE DTLUX1

THIS ROUTINE OBYAINS THRUST AND AEQDYNAMIC CIEFFICIENTS AND
DERIVATIVES FROM TABLE INTERPOLATION. TABJLAVED FUNCTIONS ARE
HELO IN BLANK COMMON AND ROUTINE INTRP3 IS CALLED TO PERFORM THE
ACTUAL INTERPOLATION. RESULTS ARE REVURNED IN COMMUN BLOCK /CUEFS/

COMMON /ADDVZALFAPALFA)BETAy XMNoCSPHIP + SNPHI P4 QUE yVSSoRHO
COMMON /TIMES/T

COMMON /VANES/SKPL(9) +OELQ,DELR,DELP
COMMON /COEFS/THRyCMQyCNRyCNPoCY2,CL3,CX0eCMO3COCMyCNF ¢CN24CLPyCL2
14CXCyCNQyCMDQPy CLDRP 4CMR,CLD

COMMON /ZUTILYY/G,RTOD

D0JBLE PRECISION T

DIMENSION ONEDM(4), TWODM(T)
EQUIVALENCE (ONEDM(1),CNP), (TWODM({1},CMO)
T1 = SNGL(T)

IF{TL.6T.414)GO TO 10

CALL INTRP3(V1y0.90491sTHR)

30 TO 20

CALL INTRP3(T1s0.490.¢2yTHR)

G0 70 20

ENTRY DTLUX2

ALF = ABS(ALFA)*RTD

BEY = ABS(BEVA)*RTD

ALFP = ALFAPSRTD

DQ = ABS{DELQ)

OR = ABS(DELR}

*CALL INTRP3(ALF+0490.43,CMQ)

CALL INTRP3(BET40,+0.93,CNR)

DO 30 I=4,46

CALL INTRP3(ALFP 90, 106+ ¢ONEDM(1-3} )
CALL INTRP3(XMNOss 04y 74CX0}

D0 40 128,14

CALL INTRP3(ALFP ¢XMNyOs o1 THWODM(I~T))
CALL INTRP3(ALFP,XMN,DQy159CNQ)

CALL INTRP3CALFP+XMNsORs15,4CLORP)

CALL INTRP3(ALFP ¢ XMN+0Qy164CMOQP)

CALL INTRP3 (ALFP,XMNy DRy 16,CMR)

CALL INTRP3I(ALFPXMNyABS(DELP)+17,CLD}

RETURN

END
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CARD w
1 SUBROUTINE THRCCN £
2 C *%s
3 cC THIS ROUTINE CALCULATES MISSILE MA3S, INERTIAS AND CG POSITION :
4 C AS A FUNSTION OF ENGINE THRUST CONOITIONS. THE INTEGRAL OF THE .
5 ¢ THRUST 1S CALCULATED BY THE TRAPEZOIDAL RULE TO OBTAIN ENGINE .
6 C IMPULSE. g
T C %%

3 COMMON /CDEFS/THR,AERC (18) ¢
9 COMNON 7MSINCG/ST WO /WP X 1X0¢X1YCRLEGO ¢ ROCGOsRDCGP ¢ XMy XIX¢ X1Y, !
10 13LCG4ROCS

il COMMON /T TMES/T ,CT,TBO, TSTOP, IPRyJ ) LAUNCH ¥
12 <CONMON /UTTLTY/GsRTD {
13 COMMON / BLOGKT/KK34THPP, TIMP :
14 OOUBLE PRECISION T, 0T i
15 TIMP =» TINP#,5% (T=TPR)# (THR¢THRP) ¥
16 THRP = THR é
17 TPR = T 1
18 DELW = TIMP/SI ;
19 XM = {(WO-DELWI/G {
20 TMPL = 1.~DELW/WO é
21 XIX = XIXO®TMPL

22 XI¥Y = X_YO®INPL

2 KDCG = ROCGO~DELWSCGSHWP ;
24 RETURN ¥
25 ENTRY INTHRC 2
27 C *##% (ERQ STARTING VALUES ¥ THRUST INTEGRAL AND TIME iF’
28 C .
29 TIMNP = Q. 4
10 PR 20, ‘
31 THRP = 0, %‘*
32 C3SHWP = (KDCGO=RDCGP)/WP )
33 RETURN 3
34 “END ¥
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CARD

1 SUBROUT INE INTRP3({X,YsZ,1,FXY2)
2 C ¢%x%
3 ¢ THIS ROUTINE PERFORMS LINEAR INTERPOLATION IN TABULATED FUNCY IONS
¢ C OF 1y 2 OR 3 INDEPENDENT VARIABLES. THE FUNZTIONS MUST BE
5 ¢ TABULATED FOR VALUES OF INDEPENOENT VARIABLES JHICH START AT 2€RO
6 C AND INCREASE WITH CONSTALT INTERVALS., THE TAGLES USED ARE DEFINED
7 ¢C FOR POSITIVE RANGES OF INDEPENDENT VARTABLES BUT IF REQUIRED
8 C THE VARIABLE INCREMENT MAY BE NEGAVIVE,
9 (C **x%x

10 COMMON DXDYDZ(60)4,1ADD(20), AERO(1360)
11 J = 3%[-2

12 DX = DXOYODZ(J)

13 DY = OXCYDZ(J+})

14 U2 = DXDYDItJ+2)

15 J = IFIX(X/0X})

16 DELX = X/0X-FLOAT(J}

I7 iIF (DY.EQ.0.,)G0 YO 40

18 IF (J.6T.16)U=16

19 K = IFIX(Y/0Y)

20 VELY = Y/DY~FLOAT(K)

21 IF (KoGY o3 )K=k

22 tF (01.EQ.0.)50 TO 50

23 L = IFIXt2/D2)

24 DELZ = 2/0Z-FLOAT(L)

s IF (LGT.4)L=4

26 N o= JeLosK+648L+T1ADD(T}

27 N=1

.28 NN 2

29 60 T0 30

30 10 M = Mebs

31 Nr 2

32 FXY1l = FXY

33 GO Y0 30

34 20 "FXYZ = FXYlI+{FXY-FXYL)¢DELZ

35 RETURN

36 40 M = J¢lADO(T}

37 NN = 1

38 GO 7O 230

39 50 M = Jelo®Ke1ADQ(!)

40 NN = 2

LY N=3

42 30 10 30

43 60 FXYl = FX1

44. RETURN

45 70 FXYLl = FXY

46 RETURN

47 30 FX1 = AERO(M)*{AERO(M+1)=-AERU(M) )SDELX
48 GO TO(60,80) 4NN

9 80 M a2 M+l6

50 FX2 = AERO(M) +{AERO(M+1)-AERO(M})*DELX
51 M= M-16

52 EXY = FXL1+#{FX2-FX1)#*DELY

53 GO TO{10420+70) 4N

54 END
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1 SUBROUTINE PROATA :
2 COMMON /SEEKR/ NS+V$(2) 40VS(2),08V(8) :
3 GOMMON /T IMES/T oDV, T80, TSTOP,TPRyJ+LAUNCH g
4 NOUBLE PRECISTON T,0T 3
5 COMMON /GNYRL/DUM{4) ¢OATA(64) b
6 COMMON ZAUTQP/NAJVA(13),0VA(LS),0V(T) A
1 COMMON /VANES/ZNV,VV(4),0VVI4)40EL(3) 4
[ CONMON /ROTATE/NR ¢PB 4Q8 JR8 ¢ THETA o P4 oPST yDPB10OQBsORB, DTHA . DPHY E:
9 LoDPSToSNTHA CSTHAZSNPHI (CSPHE(SNPST CSPSI o WPy W ¢WRATHETA JBPH 8PS g
10 COMMON /STATEV/NT yUE ¢VE ¢WE X 1Y ¢ 2o DUE OV E¢DAEy DX 4 DYy DL
1 CONMON /ADDV/ALFAPyALFA(BETA XNNyCSPHIP ¢ SNPHIP  QUE ¢ VSSRHO
12 COMNON /COEFS/THRyAERC(18)
13 SOMMON /GEOMK /S 4D o XTCGrYTCG s ZTCG ¢RLL ¢RL2 ¢ WUE  WVE WWE
14 COMMON /MSINCG/SToWOWFy XIX0y XIYO,RLCGOROCGOLROCGP y XMy AT Ko XT Yy
, 15 LRLCG 4+ RDCG d
16 COMNON /ZFCEMOM/F XA o FYA(F2ZA o+ XNXA s XMYA 9 XMZA oF THX  FTHY 4 FTH2 b
x ir COMMON / INCEPT/ UT(3)4XT(3)y THVEL ¢ TNRNGE (BEPSZ 4 BEP SY ;
I8 COMMON /7 AUTOK/ WQG +DQG¢TAUZyTAUY ¢TAULGY Z9RAL)RB29WPLyOP Ly RK 1y 5
; 19 1PYAK 1, PYBK1+PYIK L WQL4DQLsPYLIMIRLI MoGBIAS,QBIAS,RBIAS 4
| 20 CONMON /UTILTY/GyRTD §
: 21 * DIMENSION RDRV{&)+ DDAV(6) §
, 22 EQUIVALENCE (RDRV(L),0PB) }
! . 23 BTYHETA = THETASRTO
‘ 24 8PS = PSISRTD
i 25 GO TO(40950450), 15w
| 26 40 RETURN ,
! 27 50 ARITE( 699301 CyUEVEINE+XoY o2 oWP o WQoWRyBTHETAyBPHBPSsUToXT
! 28 L THRNGE,TMVEL4VS
{ 29 LINES = LINES+3 .
? 30 IF(LINES oLT. 52) RETURN
i 31 LINES = 1
‘ 32 IPAGE = IPAGE®]
! 33 WRITE { 61940} IFAGE
i 34 PETURN
| 35 60 CGNTINUE
! 3 CONTINVE
i 37 1PAGE » [PAGE+L
| 38 WRITE { 69940) 1PAGE
39 ALFAP » ALFAP#RTO
| 40 ALFA = ALFASRTD
| 41 8ETA = BEVA®RTD
, 42 CSPHIP » ATAN2(SNPHIP,CSPHIP)®RTD
| 43 D0 70 Usly6
! L 1% 10 OORV{I) = RDRV{1)}*RTO
‘ 45 WRITE( 649500 TyUEWWE(MEsX ¥y 20 DU%; DVEOWE DXy OY202
46 WRITEL 69960) WPyWQ'WRBTHETA.BPH,BPS  DORY .
' 47 HRITE(L 6,970) VS,0VS
‘ 48 ARTTE( 69980} VA,OVA
' 49 WPITE( 64990} VV,OVV
‘ 50 WRITE( 6,1000) DEL+BEPSZsBEPSY USV OV
st WRITEL 5,1010) XHNVSSRHOQUE+ALFAPALEA)BETA)CSPHIP, AERC,
52 1 EXAy EYA)FLA, XMXA o XHYA s XMLA
53 WRITE( 64,0020} FTHX,FTHY FTHZy XMy XIX X1 ¥4RDCG
56 WRITE( 6,1030) UT,XTTMRNGE +TMVEL
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120
101
102
103
104
105
1Jo
107
108

10

20
30

903
910

920

930
9490
950
960

970

179

RETURN

ENTRY PRHEAD

WRITE( 6,900) (OATA(1),1=1,20)

WRITE( 64920) S¢DyRLL4RL2 ¢WO yWFXIXO+XIYO,ROCGO+ROCGP,QBIAS,
LRBIASy XTCGy YTCG oZVCG yMUE ¢ WVE ¢ WWE ¢ RLCG 04 ST 4DT

LINES = 40

IPAGE = 1

If (IPR)10,20,30

ISW = 3

IPR = =IPR

RETURN

1SW = )

RETURN

ISW = 2

WRITE( 6,910)

RETURN

FORMAT (1HL 4 120X+ *PAGE 1%4/48X, *TERMINAL HOMING SIMULATION (DIGITAL
1%, /748X436(%='),y //720X,20A% //)

FQRMAT(//25X, 'RESULTS ROW 13%y /30X,*COLUMN I TIME TN SECONDS*,
125Xy *COLUMN 2 UE IN FT/SEC'y /30X,*COLUMN 3 VE IN FT/SEC?,28X,
2'COLUMN 4 WE IN FT/SEC', /30Xy*COLUMN 5 MISSILE X COORD IN FT*,
319X, *COLUNN 6 MISSILE Y COORD IN FT', /30X,*COLUMN 7 MISSILE 2
4CQQRD IN FT', L9X,*COLUMN 8 ROLL RATE IN DEG/SEC'y /30Xy *COLU%N 9
S5 PITCH RATE IN DEG/SEC', 19Xy*ZOLUMN 10 YAW RATE IN DEG/SEC', /30
6XyYCOLUMN 11 THETA IN DEGREES'y 24X+*'COLUMN 12 PHI IN DEGREES'y /
T30X9*COLUNMN 13 PST IN OEGREES®y //25X+*RESJLTS RO4 23 %y /30Xy
B'COLUMN 2 TAPGEY U IN FT/SEC*s 21¥,'COLUMN 3 TARGET V IN FT/SEC?
9y 730Xy 'COLUMN & TARGEr W IN FT/SECY, 21X,'COLUNN 5 TAIGET X COORD
AC IN FT*4/30X,*COLUMN 6 TARGET Y CQOORD IN FT'y 19X+'COLUMN T TA
BRGET Z COORD IN FTY, /30X, 'COLUMN 8 MISSILE/TARGET RANGE IN F¥v,
CL3X*COLUNN 9 MISSILE/TARGET CLISING SPEED IN FT/SEC*, /30X,'CILU
DMN 10 GIMBAL ANGLE THETAG IN DEGREES' s 9Xy'COLUMN 11 GIMBAL ANGLE
EPSIG IN DEGREES®)

FORMAT (5X,*VEHICLE DETAILS:'y /710X, 'REFERENCE AREA', 15Xy F8.3,
1t SQ FY'y 20X, 'REFERENCE LENGTHY, L12XyFB8e3y ' FTYy /10X+!FRONT LUG
2 LAUNCHER TRAVEL®¢4X1F3 439 FT %y 23Xy 'REAR LUG LAUNCHER TRAVEL', 4X,
3FBe3y ' FT' /20Xy " INITIAL TOVAL WEIGHTY 4 9XoFB842y ' LBS'y 22X,
4YPRUPELLANT WEIGHI 'y 10XoFB8e2y ¢ LBS'9/10X ' INITIAL X NOMs OF 1,
5 9XFBe3y ' SLUGS FT##2%, 14X, " INITIAL Y MOM, JDF .l1.%y 3XysFB8e3y
6t SLUGS FT®%2¢%, /J1OXe'CG TOTAL SHIFTY, 15X, FB8.3, ' FTY, 23X,
T*PROPELLANT CG TO €GO'y 8XyFB8e3, * FT'y /10X,'AUTOPILOT Q BIASY,
813XyFBse3sr ' DEG/SEC'y 18X,* AUTOFILOY R BIAS'y 12X,F8.3, * DEG/SEC?
9/10X, *THRUST POINT OFFSETS (XeYs2l FT)'910X43F1042+710X,*WIND SPEED
A COMPOUNENTS (XE2YCyZE F/S)'y S5X93F10s1: /10X *'REAR LUG TO CGO(FT)*
By22XeF10434/710X ' ENGINE SPECIFIC IMPULSE'y 6X¢FBa3y * SECS'y 21X,
[ CINTEGRATION STEP LENGYH'Yy 5X4FBs4y ' SECS') .

FORMAT (/3X,F643y 2(3F10¢2y 3FLl0¢1)¢/9X93F10.2¢ 4F10s1y 3F10.2)

FOIMAT( 1419 30X, * TERMINAL HOMING CONTD seca®y 51Xy PAGE®, [3)

FORMAT (// 10X, *TIME' \F8e3y * SECONDS'» //5X+'TRANSLATION VARIAB
LLES IN F/SEC AND FT'y 12X+3F1042y 3F1041y /5X,?TRANSLAYION DERJVAT
21IVES IN F/SEC#x2 AND F/SEC'y 5Xy3F10.34 3F10.2}

FORMAT (/5X,*ROTATIUN VARIABLES IN DEG/SEC AND DEGS'y 11Xy6F10.29
1/5X+*ROTATION DERIVATIVES IN OEG/SEC**2 AND DEG/SECYy 4Xy6F10.3)

FORMAT (/5X,*SEEKER VARTABLES UN DEG AND OEG/SEC'y 15X42F10.34/5X,
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CARD
109
110
111
kL2
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
13¢
135
138

980

$90
1000

1010

1020

1030

180

1 *SEEKER DERIVATIVES IN DEG/SEC AND OEG/SEL®*2', 8X,2F10.3)

FORMAT (/5X,*AUTOPILOT VARIABLES IN DEG EVC'y 20X+16F1043¢ /55X,

1 6F10s3y /55X9TFL0,3¢ /5X,*AUTOPILOT DERIVATIVES IN DEG ETC®, 18X,
26F10.3y /55X96F10.3y /55X, TF10.3}

FORMAT (/5X+*VANE VARIABLES IN DEGREES®, 25X+4F1043y /75X,

1 'VANE DE“TVATIVES IN DEG/SEC's 23X44F10.3)

FORMAT (/X *DELQ,DELRy DELP(DEGREES) 'y L1X, 3F843+11X,"BEPSZ & BEP
LSY(DEGS)®*y 2X42F843 4//5Xy? SEEKER ADOIVIONAL VARIABLES'y 6X,8F10.3
20//5Xy YAUTOPILOT ADDITIONAL VARIABLES'y 10X,7F10.3)

FORMAT (/5X¢*MACH NO'y F9.2¢ 4Xys'SONIC SP% F8.1y &Xy'Al DENS',
2F8s 69 4Xs*OYN ORES' y FB842y 4Xo*ALFA P'y FlOe3y &Xy*'ALFAY, Fl2.3,
2/5% *BETAty Fl2.3, 4Xy'PHI PRYy F10e3,//75X,'AEROOYNAMIC COEFFICIENT
375y /5X+'CMO(AD® . FLOL%s 3X+'CNRIB)Yy FLlOs4s 4X2'CNPIA)Yy Fl0.4y
44Xy 'CY2(A) %y FLCa4y 4Xe'CL3(AYYy FLlOsbhy 4X 'CAO(MI*, Fl0oby &X/5Xy
5YCMO(AIM)*y FBody &Xo'COCMCAIM)®y FTo4y 4Xy 'CNF(AIM)Y, FBo&y 4X,y
6'CN2(AsM)*y FEs&y 4X*CLP{ASMI® y FB.4y 4X,"CL2(AIM)Yy FBoby /5X,
TYCXCLA MYty FBodor 4Xo'CNQUAMIQ) Yy Fbobs 4X9'CMDQP(3VI®y FT.&, &X,
8YCLORPI3V)?y FTo4,4X o 'CHR(AIM4R) Yy Fbaky 4@Xs'CLCUAIMIP)®y Fbohy
977 5Xy'AERODYNAMIC FORCES AND MOMENTS® ¢ /5X,* FXA(LB)*y, F9.2, 4X,
AYFYA(LB)Yy F9.Z0 4Xy *FZA(LB) 'y FOe2y 4X*MXALLIFT)', FT.2, &X,
BYMYA(LBFT)ty FT7.2, 4X¢*MZA(LBFY)'y FT.2)

FORMAY (/5X,*THRUST COMPONENTS (X,Yo2 LB)'y 3F841y 4Xo'MASS?', F8,2
1 QX';X Mo OF [o%, FB.2y 4Xo*'Y Mo OF Jo%y F843¢/5Xs'CG SHIFTY 20X,
2 F843

FORMAT (/5Xy*TARGET SPEED (XeYel FT/SEC)'y 3FBele 4Xy'TARGET POSIT
LION (XeYe2Z FT)?"93FL0Le/5Xs *TARGET/MISSILE RANSE (FT) 'y FL1041+20X,
2 'CLOSING SPEED CF/S)*y 9X,FB.1)

END
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N
U
9
b3
N
()
4
1
\l
b
4
£
E‘

3.
373,
130,
15.
)
~40,

2,54
0450
0.1587
0.0228

L]

0.5
48
0.5
2060,
1800.
140,
48,

0.

3. Qe
1. 15,
«53 +33
7. 1.
0. 0.
o267 +«584
0. 0.
-375 -.15

0.4602 0.4207

© 0,08

15,
40
0.

Se
2. 75
195.8

15,
043821 043446 0,3085 0,2743 0,2420 0.2i19 0.186)

o. o.

2¢ 6750,
15, 2.8
0, 0.

0. 0.

Q. O
21 19. 4

20, 200,

0.
12,
115,
0.
0
3.5
1Y)

181

0.
0.

o064
O,
‘)

6.07

15.10

0.1357 041151 0,098 0,0808 0.,0668 0.0548 0.0446 0,0359 0,02087

0.0179 0.0139 0.0107 0,00820 0.00421 0.00446 0,00347 0.,00256 0,001 8T

02
20850,
ol
2205,
2040,
1200.
120.
4l

2.

*5¢25

=10.95
2.

« 08
3.22
2.
«.015
=1.345
2,
<015
<181

«0916667
L
558
2.
=95
~16.2
=95
-16.2
~ 95
~1642
~eb
~15.5

2
~.03
~4s36
~,03
4,36
-,03
~4.36
-, 05
-4,6

2.

2660,

2160,
2020,
610,
100.
as.

~3e)
-1l.0

«18
3.86

=07
*l.b

+C25
213

o43
«730
0366667
=21
~18.53
-2.1
«18.55
“2.1
-18.55
=18
=17.8
0366667
=.l4
-5,38
- lé
~5.38
-elé
~5.38
.17
‘5065
«366667

2240,

2140,
2005,
420,
90,
30.

=T .4
=11.0

ok
473

"‘1
“1.86

« 032
255

o411
270

3.6
=21l.1
=3.6
-21,1
=3¢
221,
~3.1
=20.2

-e3
~He45
-03
~5 45
-3
~6+45
-l
-6.8

THRUST TABLE 1 FOR YIME 0 TO .16 SECS

2230, 22085, 2180, 2170,
THRUST TABLE 2 FOR TIME FROM .14 SECS
2125, 2110, 2093, 20735,
1990, 1970, 1950, 1910,

320. 295, 220, 190.
80. 75, 63, 55,
20, 10, 0.
YABLE OF RATE DAMPING DERIVATIVS CMQ
-8 44 9.3 =9.96 *10.45
=11.0 ~11,0 =11.0 =110
OE'.TA LN. PRIME
«69 1.06 1.3 2,01
4. 73 473 4T3 .7
DELYA CY PRINE
-3 ~od7 L2Y 1) .87
’10.6 -l.éb -l.ab ‘10.6
DELTA CL PRINE LUGS
1045 081 «08 oll
0258 «23%5 258 * 235
CX0 PRIME
397 «387 379 «378
1e2 1.2 1.2 1e2
CMO PRIME
-5.2 T2 9.3 -11,38%
-21.1 '2101 '2101 '210‘
5.2 =72 =93 «11,.5%
=211 -21,1 «2ls} =21l.1
5.2 =142 -9.3 ~11.5%
~21,1 =2l.1 «2l.1 =21.1
4,75 6.7 ~8+8 -10.,98
«20.2 =202 «20.2 =20,2
DELTA CM PRIME
-.64 1,19 -1.85 w2063
-6.45 =5 043 L XL} “be45
“s b4 ~-1,19 =1.8% =2.63
L T1 ] 648 6,45 6445
LY 1] -1.19 1,85 2463
“6e45 =645 -6, 45 ~0e458
- 715 =-1.32 -2.,02 2.8
=6.8 =6.8 548 648
CN PRIME
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T A AAN 'e
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T et i el Bt . e g st e v it

CARD
56

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
14

76
17
78
19
30
81
82
83
84
85

87
88
89

90,

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

l.4
10.55
1.4
10.55
leé&
10.55
l.4
10.7
«366667
<06
2,2
<06
2.2
«06
242
6
2426
«366667
=439
'061
-.39
=67
-e39
-~ 67
~ehl
=eT2
«366667
.02
«331
«02
«331
«02
«331
<035
e84
«366667

3.15 &e 24
12.2 1242
3.15 4. 24
12.2 12.2
3015 "z‘
12.2 12.2
3.2 4.35
12. 12.
DELTA CN PRIME
«31 o5
2.63 2.63
.31 -5
2.63 2.63
<31 o5
2.63 2.63
«32 «53
2.71 2.71
ROLL DAMPING CLP
- 527 ~+ 579
- 645 -. 645
-.527 =+579
e 645 e 645
~.527 ~-.579
o645 =645
«.55 -.609
-.72 ~e T2
DELTA CLP PRIME
.07 .101
<354 +354
<07 101
o356 <354
.07 101
354 ¢354
.12 .186
1.03 1.03
cXC
.002 «02
1,09 1.09
»002 02,
1.09 1'09
0002 '02
1,09 .09
4002 «008
«56 56
CN PRIME PER DELTA
o157 162
<191 191
157 o162
.191 191
.157 o162
o191 «191
196 <203
0232 «232
157 162

s e X

5.38
12.2
5.38
12.2
5.38
12.2
5.5

12.

75
2463
<15
2463
75
2463
o8
2.7

=e62
o645
~e62
“e 6‘5
~e62
-.645
-e 657
-T2

122
354
.12¢
«354
o122
.35‘
.271
1.03

«055
1.09
« 055
1.0%
«055
1.09
«02¢
56

R OR
Y1
«191
166
191
o166
«191

,e210

232
o166

182

6. 5‘
12.2
6454
12.2
6 .s‘
12.2
6.T4
12.

1.05
2.63
1.05
2463
1.05
2.62
l.11
2.7

~e649
-o 645
-+649
~e645
-e 649
‘06‘5
-.698
-T2

.193
354
«193
«354
193
354
«387
1,03

.13
1.09
13
1.09

1.09
«07
56

1735
<191
«1735
«191
«1735
<161
.217
232
21735




CARD
109
110
111
112
113
1ié
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
13¢
133
140
141
142
143
144
145
166
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

-182
<143
-182
«143
«182
179
227
175
216
175
216
<175
216
«205
24
«175
216
<175
216
175
216
«205
24
16 4 4
-+ 69
~e 81
-.69
-.81
-+ 69
~e81
- T6
~«917
~e69
= 81
~e 69
-+ 81
- 69
-+81
~e T6
-.917
=195
-. 922
-+ 795
- 922
=795
-.922
-+ 865
-+965
~+795
-e 922
-e 795
-.922
= 795
~e922

<1867
<1425
1867
<1425
«1867
#1795
«231
.169
219
«169
219
«169
219
206
«247
169
219
«169
.219
«169
219
«204
<247

-e678
~-.83
=678
-.83
-0678
-.83
-+ 15
~e95
~.678
-, 83
-l.678
~e83
. 678
-e33
=75
-.95
-.783
=935
-.783
~e935
«o783
=e935
- 8%
-e994
-.783
-+ 935
-.783
'0935
'0783
~.935

- e e e e

«1895
o145
«1895
145
«1895
-1825
232
171
*22
171
22
«171
.22
«205
254
<171
022
171
22
171
22
+205
254
366667

-.68
-. 84
-o.68
~e84
- 68
~.86
-.753
-.98
-.68
-.84
-.68
-.84
-. 68
-e84
=753
-+98
~.786
~e93
-.786
=493
'0186
~e93
~e83
-1.02
-.786
~a93
~. 786
~.93
-.786
-e93

«209
.262
<176

191
157
191
o157
191
196
232
<186
22
186
22
184
22
214
«262
184
22
186
22
184
22
214
262
CM PRIME
=71
-.85
e 71
-.85
-'71
~e85
=8
«1l.01
~e71
-.85
-7l
-.85
=Tl
-.85
-e8
~1.01
~o 01
-9
- 81
-9
-.81
-9
~.87
=1.,05
~.81
-9
-, 81
“e9
~.81
.9

[ S et

«191
<162
191
162
«191
«203
232
192
«22
192
22
192
.22
222
«262
192
22
192
022
«192
.22

<262
PER DELTA
=e13
-'85
’073
-.85
~eT73
“e 85
~.83
~l.Ul
=73
-85
- 73
~.85
-T3
Te 85
-fg’

- 13
.9
~e83
“e9
-.893
=] .05
- 83
-9
~e 83

~e83
-9

R ST FIRTET L

<191
o166
«191
«166
«191
«210
232
<201

«201
22
«201
22
«226
»262
«201
22
«201
22
«201
.22
0226
262

R QP Q

-e 76
-85
76
-.85
= T6
- 85
-, 857
-1,01
e 76
-.85
“e76
~.85
-e76
-, 85
'0851
-1.01
.o 862
-9
-.862
=9
=862
-9
-e92
'1.05
=~ 862
-9
=862
~e 9
-,862
-9

183

«191
«1735
»191
<1735
-191
217
232
«2095
22
«2095
22
«2095
22
233
«262
«209%
22
«2095

«2095
22
«233
262

-.787
-85
- 737
-+ 85
-, 787
-85
-.886
=-1.01
- 787
=83
~787
-.85
-.787
=+ 85

T -.886

-1.01
- 898
-9
~.898
-9
~«898
-9
e 94
~1.05
~«898
~e9
=898
-9
=.898
-9




CARO
163
164
165
166
167
168
159
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
167
188
189

190 -

191
192
193
134
195
196
197
198
199
200
201

~. 865
=965
16 4 4
.13
124
.13
124
.13
124
«143
.128
el3
o124
o13
<124
.13
124
143
.128
ol42
«1355
o142
-1355
ol42
«1355
o148
<136
o142
<1355
ol42
<1355
142
«1355
148
136
999
1

~e84
=994
2.
<127
123
o127
123
127
123
«l4
«1285
127
.123
<127
123
o127
122
eld
-1285
«1455
1345
1455
1345
«1455
« 1345
o146
«136
«1455
«1345
«1455
« 1345
«1455
«1345
146
+136

[P

~-e 83
~1.02

+366667

0125
.12
.125
.12
.125
.12
.1315
.13
.125
.12
.125
.12
.125
* 12
«1375
.13
.146
<134
.146
«134
o146
134
o144
«1355
2145
.134
o146
<134
o146
134
o144
.1355

-.848
-1.05
10.
«124
-116
o124
«116
.124
116
135
.132
.124
116
o124
116
124
+116
135
2132
o144
134
«144
<134
144
134
«142
«135
o144
.134
«l44
«134
<144
134
<142
«135

- 87 -, 893
-1.05 -1.05
CL PRIME PER DELTA
123 «122
116 116
123 122
116 116
.123 122
.1156 o116
«133 «131
132 «132
.123 <122
116 116
123 122
<116 <116
123 122
o116 -116
133 131
132 «132
o1k -138
<134 «134
ol4 «138
«134 <134
«l4 <138
<134 2134
14 <139
+135 «135
.l4 ~138
«134 <134
.14 -138
134 134
14 -138
134 «134
.l4 -139
«135 «135

TOTAL SYSTEM CHECKOUT RUN FOR DR J. ROWLAND, 7 APRIL 1972.

0025

15.0

40




